3 resultados para time segmentation

em Dalarna University College Electronic Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wooden railway sleeper inspections in Sweden are currently performed manually by a human operator; such inspections are based on visual analysis. Machine vision based approach has been done to emulate the visual abilities of human operator to enable automation of the process. Through this process bad sleepers are identified, and a spot is marked on it with specific color (blue in the current case) on the rail so that the maintenance operators are able to identify the spot and replace the sleeper. The motive of this thesis is to help the operators to identify those sleepers which are marked by color (spots), using an “Intelligent Vehicle” which is capable of running on the track. Capturing video while running on the track and segmenting the object of interest (spot) through this vehicle; we can automate this work and minimize the human intuitions. The video acquisition process depends on camera position and source light to obtain fine brightness in acquisition, we have tested 4 different types of combinations (camera position and source light) here to record the video and test the validity of proposed method. A sequence of real time rail frames are extracted from these videos and further processing (depending upon the data acquisition process) is done to identify the spots. After identification of spot each frame is divided in to 9 regions to know the particular region where the spot lies to avoid overlapping with noise, and so on. The proposed method will generate the information regarding in which region the spot lies, based on nine regions in each frame. From the generated results we have made some classification regarding data collection techniques, efficiency, time and speed. In this report, extensive experiments using image sequences from particular camera are reported and the experiments were done using intelligent vehicle as well as test vehicle and the results shows that we have achieved 95% success in identifying the spots when we use video as it is, in other method were we can skip some frames in pre-processing to increase the speed of video but the segmentation results we reduced to 85% and the time was very less compared to previous one. This shows the validity of proposed method in identification of spots lying on wooden railway sleepers where we can compromise between time and efficiency to get the desired result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis aims to present a color segmentation approach for traffic sign recognition based on LVQ neural networks. The RGB images were converted into HSV color space, and segmented using LVQ depending on the hue and saturation values of each pixel in the HSV color space. LVQ neural network was used to segment red, blue and yellow colors on the road and traffic signs to detect and recognize them. LVQ was effectively applied to 536 sampled images taken from different countries in different conditions with 89% accuracy and the execution time of each image among 31 images was calculated in between 0.726sec to 0.844sec. The method was tested in different environmental conditions and LVQ showed its capacity to reasonably segment color despite remarkable illumination differences. The results showed high robustness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colour segmentation is the most commonly used method in road signs detection. Road sign contains several basic colours such as red, yellow, blue and white which depends on countries.The objective of this thesis is to do an evaluation of the four colour segmentation algorithms. Dynamic Threshold Algorithm, A Modification of de la Escalera’s Algorithm, the Fuzzy Colour Segmentation Algorithm and Shadow and Highlight Invariant Algorithm. The processing time and segmentation success rate as criteria are used to compare the performance of the four algorithms. And red colour is selected as the target colour to complete the comparison. All the testing images are selected from the Traffic Signs Database of Dalarna University [1] randomly according to the category. These road sign images are taken from a digital camera mounted in a moving car in Sweden.Experiments show that the Fuzzy Colour Segmentation Algorithm and Shadow and Highlight Invariant Algorithm are more accurate and stable to detect red colour of road signs. And the method could also be used in other colours analysis research. The yellow colour which is chosen to evaluate the performance of the four algorithms can reference Master Thesis of Yumei Liu.