2 resultados para thermal insulation
em Dalarna University College Electronic Archive
Resumo:
This research was carried out by studying possible renovation of a two-storey detached multifamily building by using passive solar design options in a cold climate in Borlänge, Sweden where the heating Degree Days are 4451 (base 20°C). Borlänge`s housing company, Tunabyggen, plans to renovate the project house located inthe multicultural district, Jakobsgårdarna. The goal of the thesis was to suggest a redesign of the current building, decrease the heating energy use, by applying passive solar design and control strategies, in a most reasonable way. In addition ensure a better thermal comfort for the tenants in the dwellings. Literatures have been studied, from which can be inferred that passive design should be abasic design consideration for all housing constructions, because it has advantages to ensure thermal comfort, and reduce the energy use. In addition further savings can be achieved applying different types of control strategies, from which the house will be more personalized, and better adapted to the user’s needs.The proposed method is based on simulations by using TRNSYS software. First a proper building model was set up, which represents the current state of the project building. Then the thermal insulation and the windows were upgraded, based on today's building regulations. The developments of the passive solar options were accomplished in two steps. First of all the relevant basic passive design elements were considered, then those advantages were compared to the advantages of applying new conventional thermostat, and shading control strategies.The results show that there is significant potential with the different types of passive solar design; their usage depends primarily on the location of the site as well as the orientation of the project building. Applying the control strategies, such as thermostat, and shading control, along the thermal insulation upgrade, may lead to significant energy savings (around 40 %), by comparison to the reference building without any upgrade.
Resumo:
In a Nordic climate, space heating (SH) and domestic hot water (DHW) used in buildings constitute a considerable part of the total energy use in the country. For 2010, energy used for SH and DHW amounted to almost 90 TWh in Sweden which corresponds to 60 % of the energy used in the residential and service sector, or almost 24 % of the total final energy use for the country. Storing heat and cold with the use of thermal energy storage (TES) can be one way of increasing the energy efficiency of a building by opening up possibilities for alternative sources of heat or cold through a reduced mismatch between supply and demand. Thermal energy storage without the use of specific control systems are said to be passive and different applications using passive TES have been shown to increase energy efficiency and/or reduce power peaks of systems supplying the heating and cooling needs of buildings, as well as having an effect on the indoor climate. Results are however not consistent between studies and focus tend to be on the reduction of cooling energy or cooling power peaks. In this paper, passive TES introduced through an increased thermal mass in the building envelope to two single family houses with different insulation standard is investigated with building energy simulations. A Nordic climate is used and the focus of this study is both on the reduction of space heating demand and space heating power, as well as on reduction of excess temperatures in residential single family houses without active cooling systems. Care is taken to keep the building envelope characteristics other than the thermal mass equal for all cases so that any observations made can be derived to the change in thermal mass. Results show that increasing the sensible thermal mass in a single family house can reduce the heating demand only slightly (1-4 %) and reduce excess temperatures (temperatures above 24 degrees C) by up to 20 %. Adding a layer of PCM (phase change materials) to the light building construction can give similar reduction in heating demand and excess temperatures, however the phase change temperature is important for the results.