3 resultados para tandem solar cell

em Dalarna University College Electronic Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Simple way to improve solar cell efficiency is to enhance the absorption of light and reduce the shading losses. One of the main objectives for the photovoltaic roadmap is the reduction of metalized area on the front side of solar cell by fin lines. Industrial solar cell production uses screen-printing of metal pastes with a limit in line width of 70-80 μm. This paper will show a combination of the technique of laser grooved buried contact (LGBC) and Screen-printing is able to improve in fine lines and higher aspect ratio. Laser grooving is a technique to bury the contact into the surface of silicon wafer. Metallization is normally done with electroless or electrolytic plating method, which a high cost. To decrease the relative cost, more complex manufacturing process was needed, therefore in this project the standard process of buried contact solar cells has been optimized in order to gain a laser grooved buried contact solar cell concept with less processing steps. The laser scribing process is set at the first step on raw mono-crystalline silicon wafer. And then the texturing etch; phosphorus diffusion and SiNx passivation process was needed once. While simultaneously optimizing the laser scribing process did to get better results on screen-printing process with fewer difficulties to fill the laser groove. This project has been done to make the whole production of buried contact solar cell with fewer steps and could present a cost effective opportunity to solar cell industries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of measurements on the performance of solar cell string modules with low-concentrating CPC reflectors with a concentration factor C ˜ 4X have been carried out. To minimise the reduction in efficiency due to high cell temperatures, the modules were cooled. Four different way of cooling were tested:1) The thermal mass of the module was increased, 2) passive air cooling was used by introducing a small air gap between the module and the reflector, 3) the PV cells were cooled by a large cooling fin, 4) the module was actively cooled by circulating cold water on the back. The best performance was given with the actively cooled PV module which gave 2,2 times the output from a reference module while for the output from the module with a cooling fin the value was 1,8.Active cooling is also interesting due to the possibility of co-generation of thermal and electrical energy which is discussed in the paper. Simulations, based on climate data from Stockholm, latitude 59.4°N, show that there are good prospects for producing useful temperatures of the cooling fluid with only a slightly reduced performance of the electrical fraction of the PV thermal hybrid system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low concentrator PV-T hybrid systems produce both electricity and thermal energy; this fact increases the overall efficiency of the system and reduces the cost of solar electricity. These systems use concentrators which are optical devices that concentrate sunlight on to solar cells and reduce expensive solar cell area. This thesis work deals with the thermal evaluation of a PV-T collector from Solarus.Firstly the thermal efficiency of the low concentrator collector was characterized for the thermal-collector without PV cells on the absorber. Only two types of paint were on the absorber, one for each trough of the collector. Both paints are black one is glossy and the other is dull,. The thermal efficiency at no temperature difference between collector and ambient for these two types of paint was 0.65 and 0.64 respectively; the U-value was 8.4 W/m2°C for the trough with the glossy type of paint and 8.6 W/m2°C for the trough with dull type of paint. The annual thermal output of these two paints was calculated for two different geographic locations, Casablanca, Morocco and Älvkarleby, Sweden.Secondly the thermal efficiency was defined for the PV-T collector with PV cells on the absorber. The PV cells cover 85% of the absorber, without any paint on the rest of the absorber area. We also tested how the electrical power output influences the thermal power output of the PV-T collector. The thermal and total performances for the PV-T collector were only characterized with reflector sides, because of the lack of time we could not characterize them with transparent sides also.