3 resultados para system optimisation

em Dalarna University College Electronic Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this report is to give an overview of the results of Work Package 5 “Engineering Tools”. In this workpackage numerical tools have been developed for all relevant CHCP systems in the PolySMART demonstration projects (WP3). First, existing simulation platforms have been described and specific characteristics have been identified. Several different simulation platforms are in principle appropriate for the needs in the PolySMART project. The result is an evaluation of available simulation and engineering tools for CHCP simulation, and an agreement upon a common simulation environment within the PolySMART project. Next, numerical models for components in the demonstration projects have been developed. These models are available to the PolySMART consortium. Of all modeled components an overall and detailed working principle is formulated, including a parameter list and (in some cases) a control strategy. Finally, for four CHCP systems in the PolySMART project, a system simulation model has been developed. For each system simulation a separate deliverable is available (D5.5b to D5.5e) These deliverables replace deliverable 5.4 ‘system models’. The numerical models for components and systems developed in the Polysmart project form a valuable basis for the component development and optimisation and for the system optimisation, both within and outside the project. Developers and researchers interested in more information about specific models can refer to the institutes and contact persons involved in the model development. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing costs and competitive business strategies are pushing sawmill enterprises to make an effort for optimization of their process management. Organizational decisions mainly concentrate on performance and reduction of operational costs in order to maintain profit margins. Although many efforts have been made, effective utilization of resources, optimal planning and maximum productivity in sawmill are still challenging to sawmill industries. Many researchers proposed the simulation models in combination with optimization techniques to address problems of integrated logistics optimization. The combination of simulation and optimization technique identifies the optimal strategy by simulating all complex behaviours of the system under consideration including objectives and constraints. During the past decade, an enormous number of studies were conducted to simulate operational inefficiencies in order to find optimal solutions. This paper gives a review on recent developments and challenges associated with simulation and optimization techniques. It was believed that the review would provide a perfect ground to the authors in pursuing further work in optimizing sawmill yard operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Producing cost-competitive small and medium-sized solar cooling systems is currently a significant challenge. Due to system complexity, extensive engineering, design and equipment costs; the installation costs of solar thermal cooling systems are prohibitively high. In efforts to overcome these limitations, a novel sorption heat pump module has been developed and directly integrated into a solar thermal collector. The module comprises a fully encapsulated sorption tube containing hygroscopic salt sorbent and water as a refrigerant, sealed under vacuum with no moving parts. A 5.6m2 aperture area outdoor laboratory-scale system of sorption module integrated solar collectors was installed in Stockholm, Sweden and evaluated under constant re-cooling and chilled fluid return temperatures in order to assess collector performance. Measured average solar cooling COP was 0.19 with average cooling powers between 120 and 200 Wm-2 collector aperture area. It was observed that average collector cooling power is constant at daily insolation levels above 3.6 kWhm-2 with the cooling energy produced being proportional to solar insolation. For full evaluation of an integrated sorption collector solar heating and cooling system, under the umbrella of a European Union project for technological innovation, a 180 m2 large-scale demonstration system has been installed in Karlstad, Sweden. Results from the installation commissioned in summer 2014 with non-optimised control strategies showed average electrical COP of 10.6 and average cooling powers between 140 and 250 Wm-2 collector aperture area. Optimisation of control strategies, heat transfer fluid flows through the collectors and electrical COP will be carried out in autumn 2014.