4 resultados para surface topography measurement

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To differentiate between the roles of surface topography and chemical composition on influencing friction and transfer in sliding contact, a series of tests were performed in situ in an SEM. The initial sliding during metal forming was investigated, using an aluminum tip representing the work material, put into sliding contact with a polished flat tool material. Both DLC-coated and uncoated tool steel was used. By varying the final polishing step of the tool material, different surface topographies were obtained. The study demonstrates the strong influence from nano topography of an unpolished DLC coated surface on both coefficient of friction and material transfer. The influence of tool surface chemistry is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This degree project was performed at M-real Technology Centre in Örnsköldsvik. The perpose was to investigate thedifferences in gloss and gloss variations between chemical and ground toner and different paper grades in electrophotographicprints. Gloss is a property that gives the impression of a higher quality of a product. Therefore it is of great importance toaccomplish high gloss in advertising print.A test chart was printed on three different uncoated paper grades on three different printers. Thereafter, gloss, glossvariation, surface topography, print mottle and density were measured. A visual evalution was also performed. A multivariateanalysis was acheived of the data in order to find correlations between the measured variations.The results showed that paper grades with large surface roughness gave more variations in surface topography and glossvariations (both visual and measured) in print. A rough surface also gave more print mottle. Ground toner gave moresurface topography variations and mottle which increased with the amount of silicone used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stainless steels are well known to be prone to cold welding and material transfer in sliding contacts and therefore difficult to cold form unless certain precautions as discussed in this paper are taken. In the present study different combinations of tool steels/stainless steels/lubricants has been evaluated with respect to their galling resistance using pin-on-disc testing. The results show that a high galling resistance is favored by a high stainless steel sheet hardness and a blasted stainless steel sheet surface topography. The effect of type of lubricant was found to be more complex. For example, the chlorinated lubricants failed to prevent metal-to-metal contact on a brushed sheet surface but succeeded on a blasted sheet surface of the same stainless steel material. This is believed to be due to a protective tribofilm which is able to form on the blasted surface, but not on the brushed surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cemented carbide is today the most frequently used drawing die material in steel wire drawing applications. This is mainly due to the possibility to obtain a broad combination of hardness and toughness thus meeting the requirements concerning strength, crack resistance and wear resistance set by the wire drawing process. However, the increasing cost of cemented carbide in combination with the possibility to increase the wear resistance of steel through the deposition of wear resistant CVD and PVD coatings have enhanced the interest to replace cemented carbide drawing dies with CVD and PVD coated steel wire drawing dies. In the present study, the possibility to replace cemented carbide wire drawing dies with CVD and PVD coated steel drawing dies have been investigated by tribological characterisation, i.e. pin-on-disc and scratch testing, in combination with post-test observations of the tribo surfaces using scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D surface profilometry. Based on the results obtained, CVD and PVD coatings aimed to provide improved tribological performance of steel wire drawing dies should display a smooth surface topography, a high wear resistance, a high fracture toughness (i.e. a high cracking and chipping resistance) and intrinsic low friction properties in contact with the wire material. Also, the steel substrate used must display a sufficient load carrying capacity and resistance to thermal softening. Of the CVD and PVD coatings evaluated in the tribological tests, a CVD TiC and a PVD CrC/C coating displayed the most promising results.