2 resultados para spatial correlation
em Dalarna University College Electronic Archive
Resumo:
We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical generalized linear model (HGLM), zero-inflated Poisson (ZIP), and hurdle models. The quasi-Poisson HGLM allows for both under- and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi-Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi-Poisson HGLM with spatial random effects.
Resumo:
This study covers a period when society changed from a pre-industrial agricultural society to a post-industrial service-producing society. Parallel with this social transformation, major population changes took place. In this study, we analyse how local population changes are affected by neighbouring populations. To do so we use the last 200 years of local population change that redistributed population in Sweden. We use literature to identify several different processes and spatial dependencies in the redistribution between a parish and its surrounding parishes. The analysis is based on a unique unchanged historical parish division, and we use an index of local spatial correlation to describe different kinds of spatial dependencies that have influenced the redistribution of the population. To control inherent time dependencies, we introduce a non-separable spatial temporal correlation model into the analysis of population redistribution. Hereby, several different spatial dependencies can be observed simultaneously over time. The main conclusions are that while local population changes have been highly dependent on the neighbouring populations in the 19th century, this spatial dependence have become insignificant already when two parishes is separated by 5 kilometres in the late 20th century. Another conclusion is that the time dependency in the population change is higher when the population redistribution is weak, as it currently is and as it was during the 19th century until the start of industrial revolution.