7 resultados para simulation-optimization

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this project, two broad facets in the design of a methodology for performance optimization of indexable carbide inserts were examined. They were physical destructive testing and software simulation.For the physical testing, statistical research techniques were used for the design of the methodology. A five step method which began with Problem definition, through System identification, Statistical model formation, Data collection and Statistical analyses and results was indepthly elaborated upon. Set-up and execution of an experiment with a compression machine together with roadblocks and possible solution to curb road blocks to quality data collection were examined. 2k factorial design was illustrated and recommended for process improvement. Instances of first-order and second-order response surface analyses were encountered. In the case of curvature, test for curvature significance with center point analysis was recommended. Process optimization with method of steepest ascent and central composite design or process robustness studies of response surface analyses were also recommended.For the simulation test, AdvantEdge program was identified as the most used software for tool development. Challenges to the efficient application of this software were identified and possible solutions proposed. In conclusion, software simulation and physical testing were recommended to meet the objective of the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main idea of this research to solve the problem of inventory management for the paper industry SPM PVT limited. The aim of this research was to find a methodology by which the inventory of raw material could be kept at minimum level by means of buffer stock level.The main objective then lies in finding the minimum level of buffer stock according to daily consumption of raw material, finding the Economic Order Quantity (EOQ) reorders point and how much order will be placed in a year to control the shortage of raw material.In this project, we discuss continuous review model (Deterministic EOQ models) that includes the probabilistic demand directly in the formulation. According to the formula, we see the reorder point and the order up to model. The problem was tackled mathematically as well as simulation modeling was used where mathematically tractable solution was not possible.The simulation modeling was done by Awesim software for developing the simulation network. This simulation network has the ability to predict the buffer stock level based on variable consumption of raw material and lead-time. The data collection for this simulation network is taken from the industrial engineering personnel and the departmental studies of the concerned factory. At the end, we find the optimum level of order quantity, reorder point and order days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar energy is used for space heating, and DHW production using PV modules which supply direct current directly to electrical heating elements inside a water storage tank. On the other hand a GSHP system as another source of renewable energy provides heat in the water storage tank of the system in order to provide DHW and space heating. These two sources of renewable energy have been combined in this case-study in order to obtain a more efficient system, which will reduce the amount of electricity consumed by the GSHP system.The key aim of this study is to make simulations, and calculations of the amount ofelectrical energy that can be expected to be produced by a certain amount of PV modules that are already assembled on a house in Vantaa, southern Finland. This energy is then intended to be used as a complement to produce hot water in the heating system of the house beside the original GSHP system. Thus the amount of electrical energy purchased from the grid should be reduced and the compressor in the GSHP would need fewer starts which would reduce the heating cost of the GSHP system for space heating and providing hot water.The produced energy by the PV arrays in three different circuits will be charged directly to three electrical heating elements in the water storage tank of the existing system to satisfy the demand of the heating elements. The excess energy can be used to heat the water in the water storage tank to some extent which leads to a reduction of electricity consumption by the different components of the GSHP system.To increase the efficiency of the existing hybrid system, optimization of different PV configurations have been accomplished, and the results are compared. Optimization of the arrays in southern and western walls shows a DC power increase of 298 kWh/year compared with the existing PV configurations. Comparing the results from the optimization of the arrays on the western roof if the intention is to feed AC power to the components of the GSHP system shows a yearly AC power production of 1,646 kWh.This is with the consideration of no overproduction by the PV modules during the summer months. This means the optimized PV systems will be able to cover a larger part of summer demand compared with the existing system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing costs and competitive business strategies are pushing sawmill enterprises to make an effort for optimization of their process management. Organizational decisions mainly concentrate on performance and reduction of operational costs in order to maintain profit margins. Although many efforts have been made, effective utilization of resources, optimal planning and maximum productivity in sawmill are still challenging to sawmill industries. Many researchers proposed the simulation models in combination with optimization techniques to address problems of integrated logistics optimization. The combination of simulation and optimization technique identifies the optimal strategy by simulating all complex behaviours of the system under consideration including objectives and constraints. During the past decade, an enormous number of studies were conducted to simulate operational inefficiencies in order to find optimal solutions. This paper gives a review on recent developments and challenges associated with simulation and optimization techniques. It was believed that the review would provide a perfect ground to the authors in pursuing further work in optimizing sawmill yard operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the study of cascade heat pump systems in combination with solar thermal for the production of hot water and space heating in single family houses with relatively high heating demand. The system concept was developed by Ratiotherm GmbH and simulated with TRNSYS 17. The basic cascade system uses the heat pump and solar collectors in parallel operation while a further development is the inclusion of an intermediate store that enables the possibility of serial/parallel operation and the use of low temperature solar heat. Parametric studies in terms of compressor size, refrigerant pair and size of intermediate heat exchanger were carried out for the optimization of the basic system. The system configurations were simulated for the complete year and compared to a reference of a solar thermal system combined with an air source heat pump. The results show ~13% savings in electricity use for all three cascade systems compared to the reference. However, the complexity of the systems is different and thus higher capital costs are expected.