1 resultado para self-organizing maps of Kohonen
em Dalarna University College Electronic Archive
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archive of European Integration (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (26)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (41)
- Boston University Digital Common (17)
- Brock University, Canada (10)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (15)
- CentAUR: Central Archive University of Reading - UK (34)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (60)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (15)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- Diposit Digital de la UB - Universidade de Barcelona (6)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (8)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (30)
- Institute of Public Health in Ireland, Ireland (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (1)
- Línguas & Letras - Unoeste (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (15)
- Nottingham eTheses (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (24)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (30)
- Queensland University of Technology - ePrints Archive (209)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (37)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Uruguai (1)
- Universidad de Alicante (11)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (24)
- Universidade Complutense de Madrid (1)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (60)
- University of Queensland eSpace - Australia (23)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.