21 resultados para road traffic control
em Dalarna University College Electronic Archive
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB).IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth datatransmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] First, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one incontinuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be include CAC, traffic policing used for traffic control.QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator andanalytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
IPTV is now offered by several operators in Europe, US and Asia using broadcast video over private IP networks that are isolated from Internet. IPTV services rely ontransmission of live (real-time) video and/or stored video. Video on Demand (VoD)and Time-shifted TV are implemented by IP unicast and Broadcast TV (BTV) and Near video on demand are implemented by IP multicast. IPTV services require QoS guarantees and can tolerate no more than 10-6 packet loss probability, 200 ms delay, and 50 ms jitter. Low delay is essential for satisfactory trick mode performance(pause, resume,fast forward) for VoD, and fast channel change time for BTV. Internet Traffic Engineering (TE) is defined in RFC 3272 and involves both capacity management and traffic management. Capacity management includes capacityplanning, routing control, and resource management. Traffic management includes (1)nodal traffic control functions such as traffic conditioning, queue management, scheduling, and (2) other functions that regulate traffic flow through the network orthat arbitrate access to network resources. An IPTV network architecture includes multiple networks (core network, metronetwork, access network and home network) that connects devices (super head-end, video hub office, video serving office, home gateway, set-top box). Each IP router in the core and metro networks implements some queueing and packet scheduling mechanism at the output link controller. Popular schedulers in IP networks include Priority Queueing (PQ), Class-Based Weighted Fair Queueing (CBWFQ), and Low Latency Queueing (LLQ) which combines PQ and CBWFQ.The thesis analyzes several Packet Scheduling algorithms that can optimize the tradeoff between system capacity and end user performance for the traffic classes. Before in the simulator FIFO,PQ,GPS queueing methods were implemented inside. This thesis aims to implement the LLQ scheduler inside the simulator and to evaluate the performance of these packet schedulers. The simulator is provided by ErnstNordström and Simulator was built in Visual C++ 2008 environmentand tested and analyzed in MatLab 7.0 under windows VISTA.
Resumo:
Traffic Control Signs or destination boards on roadways offer significant information for drivers. Regulation signs tell something like your speed, turns, etc; Warning signs warn drivers of conditions ahead to help them avoid accidents; Destination signs show distances and directions to various locations; Service signs display location of hospitals, gas and rest areas etc. Because the signs are so important and there is always a certain distance from them to drivers, to let the drivers get information clearly and easily even in bad weather or other situations. The idea is to develop software which can collect useful information from a special camera which is mounted in the front of a moving car to extract the important information and finally show it to the drivers. For example, when a frame contains on a destination drive sign board it will be text something like "Linkoping 50",so the software should extract every character of "Linkoping 50", compare them with the already known character data in the database. if there is extracted character match "k" in the database then output the destination name and show to the driver. In this project C++ will be used to write the code for this software.
Resumo:
Friction plays a key role in causing slipperiness as a low coefficient of friction on the road may result in slippery and hazardous conditions. Analyzing the strong relation between friction and accident risk on winter roads is a difficult task. Many weather forecasting organizations use a variety of standard and bespoke methods to predict the coefficient of friction on roads. This article proposes an approach to predict the extent of slipperiness by building and testing an expert system. It estimates the coefficient of friction on winter roads in the province of Dalarna, Sweden using the prevailing weather conditions as a basis. Weather data from the road weather information system, Sweden (RWIS) was used. The focus of the project was to use the expert system as a part of a major project in VITSA, within the domain of intelligent transport systems
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB). IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth data transmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] first, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one in continuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be including CAC, traffic policing used for traffic control. QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator and analytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
The cost of a road construction over its service life is a function of design, quality of construction as well as maintenance strategies and operations. An optimal life-cycle cost for a road requires evaluations of the above mentioned components. Unfortunately, road designers often neglect a very important aspect, namely, the possibility to perform future maintenance activities. Focus is mainly directed towards other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This doctoral thesis presents the results of a research project aimed to increase consideration of road maintenance aspects in the planning and design process. The following subgoals were established: Identify the obstacles that prevent adequate consideration of future maintenance during the road planning and design process; and Examine optimisation of life-cycle costs as an approach towards increased efficiency during the road planning and design process. The research project started with a literature review aimed at evaluating the extent to which maintenance aspects are considered during road planning and design as an improvement potential for maintenance efficiency. Efforts made by road authorities to increase efficiency, especially maintenance efficiency, were evaluated. The results indicated that all the evaluated efforts had one thing in common, namely ignorance of the interrelationship between geometrical road design and maintenance as an effective tool to increase maintenance efficiency. Focus has mainly been on improving operating practises and maintenance procedures. This fact might also explain why some efforts to increase maintenance efficiency have been less successful. An investigation was conducted to identify the problems and difficulties, which obstruct due consideration of maintainability during the road planning and design process. A method called “Change Analysis” was used to analyse data collected during interviews with experts in road design and maintenance. The study indicated a complex combination of problems which result in inadequate consideration of maintenance aspects when planning and designing roads. The identified problems were classified into six categories: insufficient consulting, insufficient knowledge, regulations and specifications without consideration of maintenance aspects, insufficient planning and design activities, inadequate organisation and demands from other authorities. Several urgent needs for changes to eliminate these problems were identified. One of the problems identified in the above mentioned study as an obstacle for due consideration of maintenance aspects during road design was the absence of a model for calculating life-cycle costs for roads. Because of this lack of knowledge, the research project focused on implementing a new approach for calculating and analysing life-cycle costs for roads with emphasis on the relationship between road design and road maintainability. Road barriers were chosen as an example. The ambition is to develop this approach to cover other road components at a later stage. A study was conducted to quantify repair rates for barriers and associated repair costs as one of the major maintenance costs for road barriers. A method called “Case Study Research Method” was used to analyse the effect of several factors on barrier repairs costs, such as barrier type, road type, posted speed and seasonal effect. The analyses were based on documented data associated with 1625 repairs conducted in four different geographical regions in Sweden during 2006. A model for calculation of average repair costs per vehicle kilometres was created. Significant differences in the barrier repair costs were found between the studied barrier types. In another study, the injuries associated with road barrier collisions and the corresponding influencing factors were analysed. The analyses in this study were based on documented data from actual barrier collisions between 2005 and 2008 in Sweden. The result was used to calculate the cost for injuries associated with barrier collisions as a part of the socio-economic cost for road barriers. The results showed significant differences in the number of injuries associated with collisions with different barrier types. To calculate and analyse life-cycle costs for road barriers a new approach was developed based on a method called “Activity-based Life-cycle Costing”. By modelling uncertainties, the presented approach gives a possibility to identify and analyse factors crucial for optimising life-cycle costs. The study showed a great potential to increase road maintenance efficiency through road design. It also showed that road components with low investment costs might not be the best choice when including maintenance and socio-economic aspects. The difficulties and problems faced during the collection of data for calculating life-cycle costs for road barriers indicated a great need for improving current data collecting and archiving procedures. The research focused on Swedish road planning and design. However, the conclusions can be applied to other Nordic countries, where weather conditions and road design practices are similar. The general methodological approaches used in this research project may be applied also to other studies.
Resumo:
This paper reviews the effectiveness of vehicle activated signs. Vehicle activated signs are being reportedly used in recent years to display dynamic information to road users on an individual basis in order to give a warning or inform about a specific event. Vehicle activated signs are triggered individually by vehicles when a certain criteria is met. An example of such criteria is to trigger a speed limit sign when the driver exceeds a pre-set threshold speed. The preset threshold is usually set to a constant value which is often equal, or relative, to the speed limit on a particular road segment. This review examines in detail the basis for the configuration of the existing sign types in previous studies and explores the relation between the configuration of the sign and their impact on driver behavior and sign efficiency. Most of previous studies showed that these signs have significant impact on driver behavior, traffic safety and traffic efficiency. In most cases the signs deployed have yielded reductions in mean speeds, in speed variation and in longer headways. However most experiments reported within the area were performed with the signs set to a certain static configuration within applicable conditions. Since some of the aforementioned factors are dynamic in nature, it is felt that the configurations of these signs were thus not carefully considered by previous researchers and there is no clear statement in the previous studies describing the relationship between the trigger value and its consequences under different conditions. Bearing in mind that different designs of vehicle activated signs can give a different impact under certain conditions of road, traffic and weather conditions the current work suggests that variable speed thresholds should be considered instead.
Resumo:
Intelligent Transportation System (ITS) is a system that builds a safe, effective and integrated transportation environment based on advanced technologies. Road signs detection and recognition is an important part of ITS, which offer ways to collect the real time traffic data for processing at a central facility.This project is to implement a road sign recognition model based on AI and image analysis technologies, which applies a machine learning method, Support Vector Machines, to recognize road signs. We focus on recognizing seven categories of road sign shapes and five categories of speed limit signs. Two kinds of features, binary image and Zernike moments, are used for representing the data to the SVM for training and test. We compared and analyzed the performances of SVM recognition model using different features and different kernels. Moreover, the performances using different recognition models, SVM and Fuzzy ARTMAP, are observed.
Resumo:
GPS tracking of mobile objects provides spatial and temporal data for a broad range of applications including traffic management and control, transportation routing and planning. Previous transport research has focused on GPS tracking data as an appealing alternative to travel diaries. Moreover, the GPS based data are gradually becoming a cornerstone for real-time traffic management. Tracking data of vehicles from GPS devices are however susceptible to measurement errors – a neglected issue in transport research. By conducting a randomized experiment, we assess the reliability of GPS based traffic data on geographical position, velocity, and altitude for three types of vehicles; bike, car, and bus. We find the geographical positioning reliable, but with an error greater than postulated by the manufacturer and a non-negligible risk for aberrant positioning. Velocity is slightly underestimated, whereas altitude measurements are unreliable.
Resumo:
This thesis presents a system to recognise and classify road and traffic signs for the purpose of developing an inventory of them which could assist the highway engineers’ tasks of updating and maintaining them. It uses images taken by a camera from a moving vehicle. The system is based on three major stages: colour segmentation, recognition, and classification. Four colour segmentation algorithms are developed and tested. They are a shadow and highlight invariant, a dynamic threshold, a modification of de la Escalera’s algorithm and a Fuzzy colour segmentation algorithm. All algorithms are tested using hundreds of images and the shadow-highlight invariant algorithm is eventually chosen as the best performer. This is because it is immune to shadows and highlights. It is also robust as it was tested in different lighting conditions, weather conditions, and times of the day. Approximately 97% successful segmentation rate was achieved using this algorithm.Recognition of traffic signs is carried out using a fuzzy shape recogniser. Based on four shape measures - the rectangularity, triangularity, ellipticity, and octagonality, fuzzy rules were developed to determine the shape of the sign. Among these shape measures octangonality has been introduced in this research. The final decision of the recogniser is based on the combination of both the colour and shape of the sign. The recogniser was tested in a variety of testing conditions giving an overall performance of approximately 88%.Classification was undertaken using a Support Vector Machine (SVM) classifier. The classification is carried out in two stages: rim’s shape classification followed by the classification of interior of the sign. The classifier was trained and tested using binary images in addition to five different types of moments which are Geometric moments, Zernike moments, Legendre moments, Orthogonal Fourier-Mellin Moments, and Binary Haar features. The performance of the SVM was tested using different features, kernels, SVM types, SVM parameters, and moment’s orders. The average classification rate achieved is about 97%. Binary images show the best testing results followed by Legendre moments. Linear kernel gives the best testing results followed by RBF. C-SVM shows very good performance, but ?-SVM gives better results in some case.
Resumo:
This paper aims to present three new methods for color detection and segmentation of road signs. The images are taken by a digital camera mounted in a car. The RGB images are converted into IHLS color space, and new methods are applied to extract the colors of the road signs under consideration. The methods are tested on hundreds of outdoor images in different light conditions, and they show high robustness. This project is part of the research taking place in Dalarna University / Sweden in the field of the ITS.
Resumo:
Since last two decades researches have been working on developing systems that can assistsdrivers in the best way possible and make driving safe. Computer vision has played a crucialpart in design of these systems. With the introduction of vision techniques variousautonomous and robust real-time traffic automation systems have been designed such asTraffic monitoring, Traffic related parameter estimation and intelligent vehicles. Among theseautomatic detection and recognition of road signs has became an interesting research topic.The system can assist drivers about signs they don’t recognize before passing them.Aim of this research project is to present an Intelligent Road Sign Recognition System basedon state-of-the-art technique, the Support Vector Machine. The project is an extension to thework done at ITS research Platform at Dalarna University [25]. Focus of this research work ison the recognition of road signs under analysis. When classifying an image its location, sizeand orientation in the image plane are its irrelevant features and one way to get rid of thisambiguity is to extract those features which are invariant under the above mentionedtransformation. These invariant features are then used in Support Vector Machine forclassification. Support Vector Machine is a supervised learning machine that solves problemin higher dimension with the help of Kernel functions and is best know for classificationproblems.
Resumo:
This report presents an algorithm for locating the cut points for and separatingvertically attached traffic signs in Sweden. This algorithm provides severaladvanced digital image processing features: binary image which representsvisual object and its complex rectangle background with number one and zerorespectively, improved cross correlation which shows the similarity of 2Dobjects and filters traffic sign candidates, simplified shape decompositionwhich smoothes contour of visual object iteratively in order to reduce whitenoises, flipping point detection which locates black noises candidates, chasmfilling algorithm which eliminates black noises, determines the final cut pointsand separates originally attached traffic signs into individual ones. At each step,the mediate results as well as the efficiency in practice would be presented toshow the advantages and disadvantages of the developed algorithm. Thisreport concentrates on contour-based recognition of Swedish traffic signs. Thegeneral shapes cover upward triangle, downward triangle, circle, rectangle andoctagon. At last, a demonstration program would be presented to show howthe algorithm works in real-time environment.
Resumo:
The aim of this thesis project is to develop the Traffic Sign Recognition algorithm for real time. Inreal time environment, vehicles move at high speed on roads. For the vehicle intelligent system itbecomes essential to detect, process and recognize the traffic sign which is coming in front ofvehicle with high relative velocity, at the right time, so that the driver would be able to pro-actsimultaneously on instructions given in the Traffic Sign. The system assists drivers about trafficsigns they did not recognize before passing them. With the Traffic Sign Recognition system, thevehicle becomes aware of the traffic environment and reacts according to the situation.The objective of the project is to develop a system which can recognize the traffic signs in real time.The three target parameters are the system’s response time in real-time video streaming, the trafficsign recognition speed in still images and the recognition accuracy. The system consists of threeprocesses; the traffic sign detection, the traffic sign recognition and the traffic sign tracking. Thedetection process uses physical properties of traffic signs based on a priori knowledge to detect roadsigns. It generates the road sign image as the input to the recognition process. The recognitionprocess is implemented using the Pattern Matching algorithm. The system was first tested onstationary images where it showed on average 97% accuracy with the average processing time of0.15 seconds for traffic sign recognition. This procedure was then applied to the real time videostreaming. Finally the tracking of traffic signs was developed using Blob tracking which showed theaverage recognition accuracy to 95% in real time and improved the system’s average response timeto 0.04 seconds. This project has been implemented in C-language using the Open Computer VisionLibrary.
Resumo:
Colour segmentation is the most commonly used method in road signs detection. Road sign contains several basic colours such as red, yellow, blue and white which depends on countries.The objective of this thesis is to do an evaluation of the four colour segmentation algorithms. Dynamic Threshold Algorithm, A Modification of de la Escalera’s Algorithm, the Fuzzy Colour Segmentation Algorithm and Shadow and Highlight Invariant Algorithm. The processing time and segmentation success rate as criteria are used to compare the performance of the four algorithms. And red colour is selected as the target colour to complete the comparison. All the testing images are selected from the Traffic Signs Database of Dalarna University [1] randomly according to the category. These road sign images are taken from a digital camera mounted in a moving car in Sweden.Experiments show that the Fuzzy Colour Segmentation Algorithm and Shadow and Highlight Invariant Algorithm are more accurate and stable to detect red colour of road signs. And the method could also be used in other colours analysis research. The yellow colour which is chosen to evaluate the performance of the four algorithms can reference Master Thesis of Yumei Liu.