16 resultados para road and traffic sign
em Dalarna University College Electronic Archive
Resumo:
Intelligent Transportation System (ITS) is a system that builds a safe, effective and integrated transportation environment based on advanced technologies. Road signs detection and recognition is an important part of ITS, which offer ways to collect the real time traffic data for processing at a central facility.This project is to implement a road sign recognition model based on AI and image analysis technologies, which applies a machine learning method, Support Vector Machines, to recognize road signs. We focus on recognizing seven categories of road sign shapes and five categories of speed limit signs. Two kinds of features, binary image and Zernike moments, are used for representing the data to the SVM for training and test. We compared and analyzed the performances of SVM recognition model using different features and different kernels. Moreover, the performances using different recognition models, SVM and Fuzzy ARTMAP, are observed.
Resumo:
This paper aims to present three new methods for color detection and segmentation of road signs. The images are taken by a digital camera mounted in a car. The RGB images are converted into IHLS color space, and new methods are applied to extract the colors of the road signs under consideration. The methods are tested on hundreds of outdoor images in different light conditions, and they show high robustness. This project is part of the research taking place in Dalarna University / Sweden in the field of the ITS.
Resumo:
This report presents an algorithm for locating the cut points for and separatingvertically attached traffic signs in Sweden. This algorithm provides severaladvanced digital image processing features: binary image which representsvisual object and its complex rectangle background with number one and zerorespectively, improved cross correlation which shows the similarity of 2Dobjects and filters traffic sign candidates, simplified shape decompositionwhich smoothes contour of visual object iteratively in order to reduce whitenoises, flipping point detection which locates black noises candidates, chasmfilling algorithm which eliminates black noises, determines the final cut pointsand separates originally attached traffic signs into individual ones. At each step,the mediate results as well as the efficiency in practice would be presented toshow the advantages and disadvantages of the developed algorithm. Thisreport concentrates on contour-based recognition of Swedish traffic signs. Thegeneral shapes cover upward triangle, downward triangle, circle, rectangle andoctagon. At last, a demonstration program would be presented to show howthe algorithm works in real-time environment.
Resumo:
This thesis presents a system to recognise and classify road and traffic signs for the purpose of developing an inventory of them which could assist the highway engineers’ tasks of updating and maintaining them. It uses images taken by a camera from a moving vehicle. The system is based on three major stages: colour segmentation, recognition, and classification. Four colour segmentation algorithms are developed and tested. They are a shadow and highlight invariant, a dynamic threshold, a modification of de la Escalera’s algorithm and a Fuzzy colour segmentation algorithm. All algorithms are tested using hundreds of images and the shadow-highlight invariant algorithm is eventually chosen as the best performer. This is because it is immune to shadows and highlights. It is also robust as it was tested in different lighting conditions, weather conditions, and times of the day. Approximately 97% successful segmentation rate was achieved using this algorithm.Recognition of traffic signs is carried out using a fuzzy shape recogniser. Based on four shape measures - the rectangularity, triangularity, ellipticity, and octagonality, fuzzy rules were developed to determine the shape of the sign. Among these shape measures octangonality has been introduced in this research. The final decision of the recogniser is based on the combination of both the colour and shape of the sign. The recogniser was tested in a variety of testing conditions giving an overall performance of approximately 88%.Classification was undertaken using a Support Vector Machine (SVM) classifier. The classification is carried out in two stages: rim’s shape classification followed by the classification of interior of the sign. The classifier was trained and tested using binary images in addition to five different types of moments which are Geometric moments, Zernike moments, Legendre moments, Orthogonal Fourier-Mellin Moments, and Binary Haar features. The performance of the SVM was tested using different features, kernels, SVM types, SVM parameters, and moment’s orders. The average classification rate achieved is about 97%. Binary images show the best testing results followed by Legendre moments. Linear kernel gives the best testing results followed by RBF. C-SVM shows very good performance, but ?-SVM gives better results in some case.
Resumo:
Traffic Control Signs or destination boards on roadways offer significant information for drivers. Regulation signs tell something like your speed, turns, etc; Warning signs warn drivers of conditions ahead to help them avoid accidents; Destination signs show distances and directions to various locations; Service signs display location of hospitals, gas and rest areas etc. Because the signs are so important and there is always a certain distance from them to drivers, to let the drivers get information clearly and easily even in bad weather or other situations. The idea is to develop software which can collect useful information from a special camera which is mounted in the front of a moving car to extract the important information and finally show it to the drivers. For example, when a frame contains on a destination drive sign board it will be text something like "Linkoping 50",so the software should extract every character of "Linkoping 50", compare them with the already known character data in the database. if there is extracted character match "k" in the database then output the destination name and show to the driver. In this project C++ will be used to write the code for this software.
Resumo:
This thesis aims to present a color segmentation approach for traffic sign recognition based on LVQ neural networks. The RGB images were converted into HSV color space, and segmented using LVQ depending on the hue and saturation values of each pixel in the HSV color space. LVQ neural network was used to segment red, blue and yellow colors on the road and traffic signs to detect and recognize them. LVQ was effectively applied to 536 sampled images taken from different countries in different conditions with 89% accuracy and the execution time of each image among 31 images was calculated in between 0.726sec to 0.844sec. The method was tested in different environmental conditions and LVQ showed its capacity to reasonably segment color despite remarkable illumination differences. The results showed high robustness.
Resumo:
The aim of this thesis project is to develop the Traffic Sign Recognition algorithm for real time. Inreal time environment, vehicles move at high speed on roads. For the vehicle intelligent system itbecomes essential to detect, process and recognize the traffic sign which is coming in front ofvehicle with high relative velocity, at the right time, so that the driver would be able to pro-actsimultaneously on instructions given in the Traffic Sign. The system assists drivers about trafficsigns they did not recognize before passing them. With the Traffic Sign Recognition system, thevehicle becomes aware of the traffic environment and reacts according to the situation.The objective of the project is to develop a system which can recognize the traffic signs in real time.The three target parameters are the system’s response time in real-time video streaming, the trafficsign recognition speed in still images and the recognition accuracy. The system consists of threeprocesses; the traffic sign detection, the traffic sign recognition and the traffic sign tracking. Thedetection process uses physical properties of traffic signs based on a priori knowledge to detect roadsigns. It generates the road sign image as the input to the recognition process. The recognitionprocess is implemented using the Pattern Matching algorithm. The system was first tested onstationary images where it showed on average 97% accuracy with the average processing time of0.15 seconds for traffic sign recognition. This procedure was then applied to the real time videostreaming. Finally the tracking of traffic signs was developed using Blob tracking which showed theaverage recognition accuracy to 95% in real time and improved the system’s average response timeto 0.04 seconds. This project has been implemented in C-language using the Open Computer VisionLibrary.
Resumo:
In this paper we investigate how attitudes to health and exercise in connection with cycling influence the estimation of values of travel time savings in different kinds of bicycle environments (mixed traffic, bicycle lane in the road way, bicycle path next to the road, and bicycle path not in connection with the road). The results, based on two Swedish stated choice studies, suggest that the values of travel time savings are lower when cycling in better conditions. Surprisingly, the respondents do not consider cycling on a path next to the road worse than cycling on a path not in connection to the road, indicating that they do not take traffic noise and air pollution into account in their decision to cycle. No difference can be found between cycling on a road way (mixed traffic) and cycling in a bicycle lane in the road way. The results also indicate that respondents that include health aspects in their choice to cycle have lower value of travel time savings for cycling than respondents that state that health aspects are of less importance, at least when cycling on a bicycle path. The appraisals of travel time savings regarding cycling also differ a lot depending on the respondents’ alternative travel mode. The individuals who stated that they will take the car if they do not cycle have a much higher valuation of travel time savings than the persons stating public transport as the main alternative to cycling.
Resumo:
The purpose of this paper is to analyze the performance of the Histograms of Oriented Gradients (HOG) as descriptors for traffic signs recognition. The test dataset consists of speed limit traffic signs because of their high inter-class similarities. HOG features of speed limit signs, which were extracted from different traffic scenes, were computed and a Gentle AdaBoost classifier was invoked to evaluate the different features. The performance of HOG was tested with a dataset consisting of 1727 Swedish speed signs images. Different numbers of HOG features per descriptor, ranging from 36 features up 396 features, were computed for each traffic sign in the benchmark testing. The results show that HOG features perform high classification rate as the Gentle AdaBoost classification rate was 99.42%, and they are suitable to real time traffic sign recognition. However, it is found that changing the number of orientation bins has insignificant effect on the classification rate. In addition to this, HOG descriptors are not robust with respect to sign orientation.
Resumo:
Vehicle activated signs (VAS) display a warning message when drivers exceed a particular threshold. VAS are often installed on local roads to display a warning message depending on the speed of the approaching vehicles. VAS are usually powered by electricity; however, battery and solar powered VAS are also commonplace. This thesis investigated devel-opment of an automatic trigger speed of vehicle activated signs in order to influence driver behaviour, the effect of which has been measured in terms of reduced mean speed and low standard deviation. A comprehen-sive understanding of the effectiveness of the trigger speed of the VAS on driver behaviour was established by systematically collecting data. Specif-ically, data on time of day, speed, length and direction of the vehicle have been collected for the purpose, using Doppler radar installed at the road. A data driven calibration method for the radar used in the experiment has also been developed and evaluated. Results indicate that trigger speed of the VAS had variable effect on driv-ers’ speed at different sites and at different times of the day. It is evident that the optimal trigger speed should be set near the 85th percentile speed, to be able to lower the standard deviation. In the case of battery and solar powered VAS, trigger speeds between the 50th and 85th per-centile offered the best compromise between safety and power consump-tion. Results also indicate that different classes of vehicles report differ-ences in mean speed and standard deviation; on a highway, the mean speed of cars differs slightly from the mean speed of trucks, whereas a significant difference was observed between the classes of vehicles on lo-cal roads. A differential trigger speed was therefore investigated for the sake of completion. A data driven approach using Random forest was found to be appropriate in predicting trigger speeds respective to types of vehicles and traffic conditions. The fact that the predicted trigger speed was found to be consistently around the 85th percentile speed justifies the choice of the automatic model.
Resumo:
This paper reviews the effectiveness of vehicle activated signs. Vehicle activated signs are being reportedly used in recent years to display dynamic information to road users on an individual basis in order to give a warning or inform about a specific event. Vehicle activated signs are triggered individually by vehicles when a certain criteria is met. An example of such criteria is to trigger a speed limit sign when the driver exceeds a pre-set threshold speed. The preset threshold is usually set to a constant value which is often equal, or relative, to the speed limit on a particular road segment. This review examines in detail the basis for the configuration of the existing sign types in previous studies and explores the relation between the configuration of the sign and their impact on driver behavior and sign efficiency. Most of previous studies showed that these signs have significant impact on driver behavior, traffic safety and traffic efficiency. In most cases the signs deployed have yielded reductions in mean speeds, in speed variation and in longer headways. However most experiments reported within the area were performed with the signs set to a certain static configuration within applicable conditions. Since some of the aforementioned factors are dynamic in nature, it is felt that the configurations of these signs were thus not carefully considered by previous researchers and there is no clear statement in the previous studies describing the relationship between the trigger value and its consequences under different conditions. Bearing in mind that different designs of vehicle activated signs can give a different impact under certain conditions of road, traffic and weather conditions the current work suggests that variable speed thresholds should be considered instead.
Resumo:
Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.
Resumo:
IPTV is now offered by several operators in Europe, US and Asia using broadcast video over private IP networks that are isolated from Internet. IPTV services rely ontransmission of live (real-time) video and/or stored video. Video on Demand (VoD)and Time-shifted TV are implemented by IP unicast and Broadcast TV (BTV) and Near video on demand are implemented by IP multicast. IPTV services require QoS guarantees and can tolerate no more than 10-6 packet loss probability, 200 ms delay, and 50 ms jitter. Low delay is essential for satisfactory trick mode performance(pause, resume,fast forward) for VoD, and fast channel change time for BTV. Internet Traffic Engineering (TE) is defined in RFC 3272 and involves both capacity management and traffic management. Capacity management includes capacityplanning, routing control, and resource management. Traffic management includes (1)nodal traffic control functions such as traffic conditioning, queue management, scheduling, and (2) other functions that regulate traffic flow through the network orthat arbitrate access to network resources. An IPTV network architecture includes multiple networks (core network, metronetwork, access network and home network) that connects devices (super head-end, video hub office, video serving office, home gateway, set-top box). Each IP router in the core and metro networks implements some queueing and packet scheduling mechanism at the output link controller. Popular schedulers in IP networks include Priority Queueing (PQ), Class-Based Weighted Fair Queueing (CBWFQ), and Low Latency Queueing (LLQ) which combines PQ and CBWFQ.The thesis analyzes several Packet Scheduling algorithms that can optimize the tradeoff between system capacity and end user performance for the traffic classes. Before in the simulator FIFO,PQ,GPS queueing methods were implemented inside. This thesis aims to implement the LLQ scheduler inside the simulator and to evaluate the performance of these packet schedulers. The simulator is provided by ErnstNordström and Simulator was built in Visual C++ 2008 environmentand tested and analyzed in MatLab 7.0 under windows VISTA.
Resumo:
This paper presents a multi-class AdaBoost based on incorporating an ensemble of binary AdaBoosts which is organized as Binary Decision Tree (BDT). It is proved that binary AdaBoost is extremely successful in producing accurate classification but it does not perform very well for multi-class problems. To avoid this performance degradation, the multi-class problem is divided into a number of binary problems and binary AdaBoost classifiers are invoked to solve these classification problems. This approach is tested with a dataset consisting of 6500 binary images of traffic signs. Haar-like features of these images are computed and the multi-class AdaBoost classifier is invoked to classify them. A classification rate of 96.7% and 95.7% is achieved for the traffic sign boarders and pictograms, respectively. The proposed approach is also evaluated using a number of standard datasets such as Iris, Wine, Yeast, etc. The performance of the proposed BDT classifier is quite high as compared with the state of the art and it converges very fast to a solution which indicates it as a reliable classifier.
Resumo:
Utbyggnaden av vindkraft inom renskötselområdet har ökat markant det senaste decenniet, trots att kunskapen om påverkan av vindkraftsetableringar ännu inte är fullt utredd och dokumenterad. I den här rapporten beskriver vi framförallt hur vindkraftparker i driftsfas påverkar renarna och renskötseln i tre olika områden. I Malå sameby har vi studerat kalvningsområdet kring Storliden och Jokkmokkslidens vindkraftparker. I Vilhelmina Norra sameby har vi studerat vinterbetesområdet kring Stor-Rotlidens vindkraftpark, samt Lögdeålandets betesområde med Gabrielsbergets vindkraftpark som används av Byrkije reinbetesdistrikt från Norge. För att få en helhetsbild av hur renarna använder sitt betesområde är det viktigt att studera renarnas betes- och förflyttningsmönster långsiktigt och över hela deras betesområde och inte bara inom det lokala området nära parken. Det är också viktigt att ta hänsyn till att renarnas betesutnyttjande skiftar från år till år och mellan olika årstider beroende på väderlek och andra yttre förutsättningar. Vi vill också understryka vikten av att kombinera den traditionella kunskapen från renskötarna med vedertagna vetenskapliga analysmetoder för att besvara de frågor som är viktiga för att kunna bedriva en hållbar renskötsel. Vi har undersökt renarnas användning av områdena genom att utföra spillningsinventeringar under åren 2009-2015 (endast i Malå sameby), och genom att följa renar utrustade med GPS-halsband under åren 2005-2015. Datat är insamlat före och under byggfas och under driftsfas (för Gabrielsberget finns GPS-data endast för driftsfasen). Vi har analyserat data genom att utveckla statistiska modeller för val av betesområde för varje område där vi har beräknat hur renarna förhåller sig till vindkraftparksområdet före, under och efter byggnation, och på Gabrielsberget när parken varit avstängd under 40 dagar och under drift vid olika renskötselsituationer. Genom intervjuer, möten och samtal, samt information från Gabrielsbergets vindkraftparks kontrollprogram, har vi tagit del av renskötarnas erfarenheter av hur renarnas beteende, och därmed även renskötseln, påverkats av vindkraftsutbyggnaden i respektive område. Våra resultat visar att renarna både på kalvnings- och på vinterbetesområden påverkas negativt av vindkraftsetableringarna (Tabell a). Renarna undviker att beta i områden där de kan se och/eller höra vindkraftsverken och föredrar att vistas i områden där vindkraftverken är skymda. I kalvningsområdet i Malå ökade användningen av skymda områden med 60 % under driftsfas. I vinterbetesområdet på Gabrielsberget, när renarna utfodrades i parken och kantbevakades intensivt för att stanna i parkområdet under driftsfas, ökade användningen av skymda områden med 13 % jämfört med när de inte var utfodrade och fick ströva mer fritt. Resultaten visar också att renarna minskar sin användning av området nära vindkraftparkerna. I kalvningslandet i Malå minskar renarna sin användning av områden inom 5 km från parkerna med 16-20 %. Vintertid vid Gabrielsbergets vindkraftpark undvek renarna parken med 3 km. Våra resultat visar även att renarnas betesro minskar inom en radie på 4 km från vindkraftparkerna under kalvningsperioden och tiden därefter i jämförelse med perioden före byggfas. Exakta avstånd som renarna påverkas beror på förutsättningarna i respektive område, exempelvis hur topografin ser ut eller om området är begränsat av stängsel eller annan infrastruktur. Förändringarna i habitatutnyttjande i våra studieområden blev tydligare när parkerna var centralt belägna i renarnas betesområde, som i kalvningsområdet i Malå eller i vinterbeteslandet på Gabrielsberget, medan det inte var lika tydliga effekter kring Stor-Rotlidens park, som ligger i utkanten av ett huvudbetesområde. Oftast är snöförhållandena bättre ur betessynpunkt högre upp i terrängen än nere i dalgångarna, på grund av stabilare temperatur, vind som blåser bort snötäcket och mer variation i topografin. Därför kan etablering av vindkraftparker i höglänta områden försämra möjligheten att använda sådana viktiga reservbetesområden under vintrar med i övrigt dåliga snöförhållanden, vilka blir allt vanligare i och med klimatförändringarna. Våra resultat tyder inte direkt på att renarna påverkats negativt under dåliga betesvintrar men fler år av studier behövs för att ytterligare klargöra hur vindkraft påverkar renarna under dessa vintrar. Våra studier har visat att etablering av vindkraft har konsekvenser för renskötseln under både barmarkssäsongen och under vintern, men effekterna förmodas få störst inverkan inom vinterbetesområdet där det är svårt att hitta alternativa betesområden för renarna. Under sommaren är betestillgången oftast mindre begränsad och renarna kan lättare hitta alternativa områden. En direkt konsekvens av Gabrielsbergets vindkraftpark som är placerad mitt i ett vinterbetesområde har blivit att renarna behöver tillskottsutfodras och bevakas intensivare för att de inte ska gå ut ur området. När den naturliga vandringen mellan olika betesområden störs för att renarna undviker att vistas i ett område kan det leda till att den totala tillgången till naturligt bete minskar och att man permanent måste tillskottsutfodra, alternativt minska antalet renar. Annan infrastruktur som vägar och kraftledningar påverkar också renarna. Vid Storliden och Jokkmokksliden och vid Stor-Rotliden där data samlats in innan vindkraftparken uppfördes visar våra resultat att renarna undviker de omkringliggande landsvägarna redan innan parkerna etablerades. Vid Stor-Rotliden ökar dock renarna användningen av områden nära vägarna efter att parken är byggd. På Gabrielsberget, där vi endast har data under drifttiden, är renarna närmare vägarna (även stora vägar som E4) när renskötarna minskar på kantbevakningen för att inte hålla renarna nära parken. Detta ökar naturligtvis risken för trafikolyckor och innebär att renskötarna måste bevaka dessa områden intensivare. Sist i rapporten presenterar vi förslag till åtgärder som kan användas för att underlätta arbetet för renskötseln om det är så att en vindkraftpark redan är byggd. Några exempel på åtgärder som är direkt kopplat till parken är att stänga av vägarna in i vindkraftparken för att förhindra nöjeskörning med skoter och bil under den tiden renarna vistas i området samt tät dialog mellan vindkraftsbolag och sameby angående vinterväghållningen av vägarna till och inom vindkraftparken. Andra mer regionala åtgärder för att förbättra förutsättningarna för renskötselarbetet på andra platser för samebyn, kan vara att sätta stängsel längst större vägar och järnvägar (t.ex. E4:an eller stambanan) i kombination med strategiskt utplacerade ekodukter. Detta för att underlätta och återställa möjligheterna till renarnas fria strövning och renskötarnas flytt av renar mellan olika betesområden.