7 resultados para problem solution fit
em Dalarna University College Electronic Archive
Resumo:
This Thesis Work will concentrate on a very interesting problem, the Vehicle Routing Problem (VRP). In this problem, customers or cities have to be visited and packages have to be transported to each of them, starting from a basis point on the map. The goal is to solve the transportation problem, to be able to deliver the packages-on time for the customers,-enough package for each Customer,-using the available resources- and – of course - to be so effective as it is possible.Although this problem seems to be very easy to solve with a small number of cities or customers, it is not. In this problem the algorithm have to face with several constraints, for example opening hours, package delivery times, truck capacities, etc. This makes this problem a so called Multi Constraint Optimization Problem (MCOP). What’s more, this problem is intractable with current amount of computational power which is available for most of us. As the number of customers grow, the calculations to be done grows exponential fast, because all constraints have to be solved for each customers and it should not be forgotten that the goal is to find a solution, what is best enough, before the time for the calculation is up. This problem is introduced in the first chapter: form its basics, the Traveling Salesman Problem, using some theoretical and mathematical background it is shown, why is it so hard to optimize this problem, and although it is so hard, and there is no best algorithm known for huge number of customers, why is it a worth to deal with it. Just think about a huge transportation company with ten thousands of trucks, millions of customers: how much money could be saved if we would know the optimal path for all our packages.Although there is no best algorithm is known for this kind of optimization problems, we are trying to give an acceptable solution for it in the second and third chapter, where two algorithms are described: the Genetic Algorithm and the Simulated Annealing. Both of them are based on obtaining the processes of nature and material science. These algorithms will hardly ever be able to find the best solution for the problem, but they are able to give a very good solution in special cases within acceptable calculation time.In these chapters (2nd and 3rd) the Genetic Algorithm and Simulated Annealing is described in details, from their basis in the “real world” through their terminology and finally the basic implementation of them. The work will put a stress on the limits of these algorithms, their advantages and disadvantages, and also the comparison of them to each other.Finally, after all of these theories are shown, a simulation will be executed on an artificial environment of the VRP, with both Simulated Annealing and Genetic Algorithm. They will both solve the same problem in the same environment and are going to be compared to each other. The environment and the implementation are also described here, so as the test results obtained.Finally the possible improvements of these algorithms are discussed, and the work will try to answer the “big” question, “Which algorithm is better?”, if this question even exists.
Resumo:
Snow cleaning is one of the important tasks in the winter time in Sweden. Every year government spends huge amount money for snow cleaning purpose. In this thesis we generate a shortest road network of the city and put the depots in different place of the city for snow cleaning. We generate shortest road network using minimum spanning tree algorithm and find the depots position using greedy heuristic. When snow is falling, vehicles start work from the depots and clean the snow all the road network of the city. We generate two types of model. Models are economic model and efficient model. Economic model provide good economical solution of the problem and it use less number of vehicles. Efficient model generate good efficient solution and it take less amount of time to clean the entire road network.
Resumo:
The traveling salesman problem is although looking very simple problem but it is an important combinatorial problem. In this thesis I have tried to find the shortest distance tour in which each city is visited exactly one time and return to the starting city. I have tried to solve traveling salesman problem using multilevel graph partitioning approach.Although traveling salesman problem itself very difficult as this problem is belong to the NP-Complete problems but I have tried my best to solve this problem using multilevel graph partitioning it also belong to the NP-Complete problems. I have solved this thesis by using the k-mean partitioning algorithm which divides the problem into multiple partitions and solving each partition separately and its solution is used to improve the overall tour by applying Lin Kernighan algorithm on it. Through all this I got optimal solution which proofs that solving traveling salesman problem through graph partition scheme is good for this NP-Problem and through this we can solved this intractable problem within few minutes.Keywords: Graph Partitioning Scheme, Traveling Salesman Problem.
Resumo:
Solutions to combinatorial optimization, such as p-median problems of locating facilities, frequently rely on heuristics to minimize the objective function. The minimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. However, pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small branch of the literature suggests using statistical principles to estimate the minimum and use the estimate for either stopping or evaluating the quality of the solution. In this paper we use test-problems taken from Baesley's OR-library and apply Simulated Annealing on these p-median problems. We do this for the purpose of comparing suggested methods of minimum estimation and, eventually, provide a recommendation for practioners. An illustration ends the paper being a problem of locating some 70 distribution centers of the Swedish Post in a region.
Resumo:
This thesis contributes to the heuristic optimization of the p-median problem and Swedish population redistribution. The p-median model is the most representative model in the location analysis. When facilities are located to a population geographically distributed in Q demand points, the p-median model systematically considers all the demand points such that each demand point will have an effect on the decision of the location. However, a series of questions arise. How do we measure the distances? Does the number of facilities to be located have a strong impact on the result? What scale of the network is suitable? How good is our solution? We have scrutinized a lot of issues like those. The reason why we are interested in those questions is that there are a lot of uncertainties in the solutions. We cannot guarantee our solution is good enough for making decisions. The technique of heuristic optimization is formulated in the thesis. Swedish population redistribution is examined by a spatio-temporal covariance model. A descriptive analysis is not always enough to describe the moving effects from the neighbouring population. A correlation or a covariance analysis is more explicit to show the tendencies. Similarly, the optimization technique of the parameter estimation is required and is executed in the frame of statistical modeling.
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population patronize the nearest facility and that the distance between the resident and the facility may be measured by the Euclidean distance. Carling, Han, and Håkansson (2012) compared two network distances with the Euclidean in a rural region witha sparse, heterogeneous network and a non-symmetric distribution of thepopulation. For a coarse network and P small, they found, in contrast to the literature, the Euclidean distance to be problematic. In this paper we extend their work by use of a refined network and study systematically the case when P is of varying size (2-100 facilities). We find that the network distance give as gooda solution as the travel-time network. The Euclidean distance gives solutions some 2-7 per cent worse than the network distances, and the solutions deteriorate with increasing P. Our conclusions extend to intra-urban location problems.
Resumo:
Tackling a problem requires mostly, an ability to read it, conceptualize it, represent it, define it, and then applying the necessary mechanisms to solve it. This may sound self-evident except when the problem to be tackled happens to be “complex, “ “ill-structured,” and/or “wicked.” Corruption is one of those kinds of problems. Both in its global and national manifestations it is ill-structured. Where it is structural in nature, endemic and pervasive, it is perhaps even wicked. Qualities of the kind impose modest expectations regarding possibilities of any definitive solution to this insidious phenomenon. If so, it may not suffice to address the problem of corruption using existing categories of law and/or good governance, which overlook the “long-term memory” of the collective and cultural specific dimensions of the subject. Such socio-historical conditions require focusing on the interactive and self-reproducing networks of corruption and attempting to ‘subvert’ that phenomenon’s entire matrix. Concepts such as collective responsibility, collective punishment and sanctions are introduced as relevant categories in the structural, as well as behavioral, subversion of some of the most prevalent aspects of corruption. These concepts may help in the evolving of a new perspective on corruption fighting strategies.