2 resultados para printed circuit boards

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic Control Signs or destination boards on roadways offer significant information for drivers. Regulation signs tell something like your speed, turns, etc; Warning signs warn drivers of conditions ahead to help them avoid accidents; Destination signs show distances and directions to various locations; Service signs display location of hospitals, gas and rest areas etc. Because the signs are so important and there is always a certain distance from them to drivers, to let the drivers get information clearly and easily even in bad weather or other situations. The idea is to develop software which can collect useful information from a special camera which is mounted in the front of a moving car to extract the important information and finally show it to the drivers. For example, when a frame contains on a destination drive sign board it will be text something like "Linkoping 50",so the software should extract every character of "Linkoping 50", compare them with the already known character data in the database. if there is extracted character match "k" in the database then output the destination name and show to the driver. In this project C++ will be used to write the code for this software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Simple way to improve solar cell efficiency is to enhance the absorption of light and reduce the shading losses. One of the main objectives for the photovoltaic roadmap is the reduction of metalized area on the front side of solar cell by fin lines. Industrial solar cell production uses screen-printing of metal pastes with a limit in line width of 70-80 μm. This paper will show a combination of the technique of laser grooved buried contact (LGBC) and Screen-printing is able to improve in fine lines and higher aspect ratio. Laser grooving is a technique to bury the contact into the surface of silicon wafer. Metallization is normally done with electroless or electrolytic plating method, which a high cost. To decrease the relative cost, more complex manufacturing process was needed, therefore in this project the standard process of buried contact solar cells has been optimized in order to gain a laser grooved buried contact solar cell concept with less processing steps. The laser scribing process is set at the first step on raw mono-crystalline silicon wafer. And then the texturing etch; phosphorus diffusion and SiNx passivation process was needed once. While simultaneously optimizing the laser scribing process did to get better results on screen-printing process with fewer difficulties to fill the laser groove. This project has been done to make the whole production of buried contact solar cell with fewer steps and could present a cost effective opportunity to solar cell industries.