5 resultados para power engineering computing
em Dalarna University College Electronic Archive
Resumo:
Friction plays a key role in causing slipperiness as a low coefficient of friction on the road may result in slippery and hazardous conditions. Analyzing the strong relation between friction and accident risk on winter roads is a difficult task. Many weather forecasting organizations use a variety of standard and bespoke methods to predict the coefficient of friction on roads. This article proposes an approach to predict the extent of slipperiness by building and testing an expert system. It estimates the coefficient of friction on winter roads in the province of Dalarna, Sweden using the prevailing weather conditions as a basis. Weather data from the road weather information system, Sweden (RWIS) was used. The focus of the project was to use the expert system as a part of a major project in VITSA, within the domain of intelligent transport systems
Resumo:
This report contains a suggestion for a simple monitoring and evaluation guideline for PV-diesel hybrid systems. It offers system users a way to better understand if their system is operated in a way that will make it last for a long time. It also gives suggestions on how to act if there are signs of unfavourable use or failure. The application of the guide requires little technical equipment, but daily manual measurements. For the most part, it can be managed by pen and paper, by people with no earlier experience of power systems.The guide is structured and expressed in a way that targets PV-diesel hybrid system users with no, or limited, earlier experience of power engineering. It is less detailed in terms of motivations for certain choices and limitations, but rich in details concerning calculations, evaluation procedures and maintenance routines. A more scientific description of the guide can be found in a related journal article.
Resumo:
The purpose of this work in progress study was to test the concept of recognising plants using images acquired by image sensors in a controlled noise-free environment. The presence of vegetation on railway trackbeds and embankments presents potential problems. Woody plants (e.g. Scots pine, Norway spruce and birch) often establish themselves on railway trackbeds. This may cause problems because legal herbicides are not effective in controlling them; this is particularly the case for conifers. Thus, if maintenance administrators knew the spatial position of plants along the railway system, it may be feasible to mechanically harvest them. Primary data were collected outdoors comprising around 700 leaves and conifer seedlings from 11 species. These were then photographed in a laboratory environment. In order to classify the species in the acquired image set, a machine learning approach known as Bag-of-Features (BoF) was chosen. Irrespective of the chosen type of feature extraction and classifier, the ability to classify a previously unseen plant correctly was greater than 85%. The maintenance planning of vegetation control could be improved if plants were recognised and localised. It may be feasible to mechanically harvest them (in particular, woody plants). In addition, listed endangered species growing on the trackbeds can be avoided. Both cases are likely to reduce the amount of herbicides, which often is in the interest of public opinion. Bearing in mind that natural objects like plants are often more heterogeneous within their own class rather than outside it, the results do indeed present a stable classification performance, which is a sound prerequisite in order to later take the next step to include a natural background. Where relevant, species can also be listed under the Endangered Species Act.
Resumo:
The capacitor test process at ABB Capacitors in Ludvika must be improved to meet future demands for high voltage products. To find a solution to how to improve the test process, an investigation was performed to establish which parts of the process are used and how they operate. Several parts which can improves the process were identified. One of them was selected to be improved in correlation with the subject, mechanical engineering. Four concepts were generated and decision matrixes were used to systematically select the best concept. By improving the process several benefits has been added to the process. More units are able to be tested and lead time is reduced. As the lead time is reduced the cost for each unit is reduced, workers will work less hours for the same amount of tested units, future work to further improve the process is also identified. The selected concept was concept 1, the sway stop concept. This concept is used to reduce the sway of the capacitors as they have entered the test facility, the box. By improving this part of the test process a time saving of 20 seconds per unit can be achieved, equivalent to 7% time reduction. This can be compared to an additional 1400 units each year.
Resumo:
The ever increasing spurt in digital crimes such as image manipulation, image tampering, signature forgery, image forgery, illegal transaction, etc. have hard pressed the demand to combat these forms of criminal activities. In this direction, biometrics - the computer-based validation of a persons' identity is becoming more and more essential particularly for high security systems. The essence of biometrics is the measurement of person’s physiological or behavioral characteristics, it enables authentication of a person’s identity. Biometric-based authentication is also becoming increasingly important in computer-based applications because the amount of sensitive data stored in such systems is growing. The new demands of biometric systems are robustness, high recognition rates, capability to handle imprecision, uncertainties of non-statistical kind and magnanimous flexibility. It is exactly here that, the role of soft computing techniques comes to play. The main aim of this write-up is to present a pragmatic view on applications of soft computing techniques in biometrics and to analyze its impact. It is found that soft computing has already made inroads in terms of individual methods or in combination. Applications of varieties of neural networks top the list followed by fuzzy logic and evolutionary algorithms. In a nutshell, the soft computing paradigms are used for biometric tasks such as feature extraction, dimensionality reduction, pattern identification, pattern mapping and the like.