3 resultados para potential nutrient use efficiency
em Dalarna University College Electronic Archive
Resumo:
The cost of a road construction over its service life is a function of design, quality of construction as well as maintenance strategies and operations. An optimal life-cycle cost for a road requires evaluations of the above mentioned components. Unfortunately, road designers often neglect a very important aspect, namely, the possibility to perform future maintenance activities. Focus is mainly directed towards other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This doctoral thesis presents the results of a research project aimed to increase consideration of road maintenance aspects in the planning and design process. The following subgoals were established: Identify the obstacles that prevent adequate consideration of future maintenance during the road planning and design process; and Examine optimisation of life-cycle costs as an approach towards increased efficiency during the road planning and design process. The research project started with a literature review aimed at evaluating the extent to which maintenance aspects are considered during road planning and design as an improvement potential for maintenance efficiency. Efforts made by road authorities to increase efficiency, especially maintenance efficiency, were evaluated. The results indicated that all the evaluated efforts had one thing in common, namely ignorance of the interrelationship between geometrical road design and maintenance as an effective tool to increase maintenance efficiency. Focus has mainly been on improving operating practises and maintenance procedures. This fact might also explain why some efforts to increase maintenance efficiency have been less successful. An investigation was conducted to identify the problems and difficulties, which obstruct due consideration of maintainability during the road planning and design process. A method called “Change Analysis” was used to analyse data collected during interviews with experts in road design and maintenance. The study indicated a complex combination of problems which result in inadequate consideration of maintenance aspects when planning and designing roads. The identified problems were classified into six categories: insufficient consulting, insufficient knowledge, regulations and specifications without consideration of maintenance aspects, insufficient planning and design activities, inadequate organisation and demands from other authorities. Several urgent needs for changes to eliminate these problems were identified. One of the problems identified in the above mentioned study as an obstacle for due consideration of maintenance aspects during road design was the absence of a model for calculating life-cycle costs for roads. Because of this lack of knowledge, the research project focused on implementing a new approach for calculating and analysing life-cycle costs for roads with emphasis on the relationship between road design and road maintainability. Road barriers were chosen as an example. The ambition is to develop this approach to cover other road components at a later stage. A study was conducted to quantify repair rates for barriers and associated repair costs as one of the major maintenance costs for road barriers. A method called “Case Study Research Method” was used to analyse the effect of several factors on barrier repairs costs, such as barrier type, road type, posted speed and seasonal effect. The analyses were based on documented data associated with 1625 repairs conducted in four different geographical regions in Sweden during 2006. A model for calculation of average repair costs per vehicle kilometres was created. Significant differences in the barrier repair costs were found between the studied barrier types. In another study, the injuries associated with road barrier collisions and the corresponding influencing factors were analysed. The analyses in this study were based on documented data from actual barrier collisions between 2005 and 2008 in Sweden. The result was used to calculate the cost for injuries associated with barrier collisions as a part of the socio-economic cost for road barriers. The results showed significant differences in the number of injuries associated with collisions with different barrier types. To calculate and analyse life-cycle costs for road barriers a new approach was developed based on a method called “Activity-based Life-cycle Costing”. By modelling uncertainties, the presented approach gives a possibility to identify and analyse factors crucial for optimising life-cycle costs. The study showed a great potential to increase road maintenance efficiency through road design. It also showed that road components with low investment costs might not be the best choice when including maintenance and socio-economic aspects. The difficulties and problems faced during the collection of data for calculating life-cycle costs for road barriers indicated a great need for improving current data collecting and archiving procedures. The research focused on Swedish road planning and design. However, the conclusions can be applied to other Nordic countries, where weather conditions and road design practices are similar. The general methodological approaches used in this research project may be applied also to other studies.
Resumo:
The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage.
Resumo:
Addressing building energy use is a pressing issue for building sector decision makers across Europe. In Sweden, some regions have adopted a target of reducing energy use in buildings by 50% until 2050. However, building codes currently do not support as ambitious objectives as these, and novel approaches to addressing energy use in buildings from a regional perspective are called for. The purpose of this licentiate thesis was to provide a deeper understanding of most relevant issues with regard to energy use in buildings from a broad perspective and to suggest pathways towards reaching the long-term savings objective. Current trends in building sector structure and energy use point to detached houses constructed before 1981 playing a key role in the energy transition, especially in the rural areas of Sweden. In the Swedish county of Dalarna, which was used as a study area in this thesis, these houses account for almost 70% of the residential heating demand. Building energy simulations of eight sample houses from county show that there is considerable techno-economic potential for energy savings in these houses, but not quite enough to reach the 50% savings objective. Two case studies from rural Sweden show that savings well beyond 50% are achievable, both when access to capital and use of high technology are granted and when they are not. However, on a broader scale both direct and indirect rebound effects will have to be expected, which calls for more refined approaches to energy savings. Furthermore, research has shown that the techno-economic potential is in fact never realised, not even in the most well-designed intervention programmes, due to the inherent complexity of human behaviour with respect to energy use. This is not taken account of in neither current nor previous Swedish energy use legislation. Therefore an approach that considers the technical prerequisites, economic aspects and the perspective of the many home owners, based on Community-Based Social Marketing methodology, is suggested as a way forward towards reaching the energy savings target.