8 resultados para parameter estimates

em Dalarna University College Electronic Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the rapid changes that governs the Swedish financial sector such as financial deregulations and technological innovations, it is imperative to examine the extent to which the Swedish Financial institutions had performed amid these changes. For this to be accomplish, the work investigates what are the determinants of performance for Swedish Financial Monetary Institutions? Assumptions were derived from theoretical and empirical literatures to investigate the authenticity of this research question using seven explanatory variables. Two models were specified using Returns on Asset (ROA) and Return on Equity (ROE) as the main performance indicators and for the sake of reliability and validity, three different estimators such as Ordinary Least Square (OLS), Generalized Least Square (GLS) and Feasible Generalized Least Square (FGLS) were employed. The Akaike Information Criterion (AIC) was also used to verify which specification explains performance better while performing robustness check of parameter estimates was done by correcting for standard errors. Based on the findings, ROA specification proves to have the lowest Akaike Information Criterion (AIC) and Standard errors compared to ROE specification. Under ROA, two variables; the profit margins and the Interest coverage ratio proves to be statistically significant while under ROE just the interest coverage ratio (ICR) for all the estimators proves significant. The result also shows that the FGLS is the most efficient estimator, then follows the GLS and the last OLS. when corrected for SE robust, the gearing ratio which measures the capital structure becomes significant under ROA and its estimate become positive under ROE robust. Conclusions were drawn that, within the period of study three variables (ICR, profit margins and gearing) shows significant and four variables were insignificant. The overall findings show that the institutions strive to their best to maximize returns but these returns were just normal to cover their costs of operation. Much should be done as per the ASC theory to avoid liquidity and credit risks problems. Again, estimated values of ICR and profit margins shows that a considerable amount of efforts with sound financial policies are required to increase performance by one percentage point. Areas of further research could be how the individual stochastic factors such as the Dupont model, repo rates, inflation, GDP etc. can influence performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subgradient optimization method is a simple and flexible linear programming iterative algorithm. It is much simpler than Newton's method and can be applied to a wider variety of problems. It also converges when the objective function is non-differentiable. Since an efficient algorithm will not only produce a good solution but also take less computing time, we always prefer a simpler algorithm with high quality. In this study a series of step size parameters in the subgradient equation is studied. The performance is compared for a general piecewise function and a specific p-median problem. We examine how the quality of solution changes by setting five forms of step size parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Levodopa in presence of decarboxylase inhibitors is following two-compartment kinetics and its effect is typically modelled using sigmoid Emax models. Pharmacokinetic modelling of the absorption phase of oral distributions is problematic because of irregular gastric emptying. The purpose of this work was to identify and estimate a population pharmacokinetic- pharmacodynamic model for duodenal infusion of levodopa/carbidopa (Duodopa®) that can be used for in numero simulation of treatment strategies. Methods The modelling involved pooling data from two studies and fixing some parameters to values found in literature (Chan et al. J Pharmacokinet Pharmacodyn. 2005 Aug;32(3-4):307-31). The first study involved 12 patients on 3 occasions and is described in Nyholm et al. Clinical Neuropharmacology 2003:26:156-63. The second study, PEDAL, involved 3 patients on 2 occasions. A bolus dose (normal morning dose plus 50%) was given after a washout during night. Plasma samples and motor ratings (clinical assessment of motor function from video recordings on a treatment response scale between -3 and 3, where -3 represents severe parkinsonism and 3 represents severe dyskinesia.) were repeatedly collected until the clinical effect was back at baseline. At this point, the usual infusion rate was started and sampling continued for another two hours. Different structural absorption models and effect models were evaluated using the value of the objective function in the NONMEM package. Population mean parameter values, standard error of estimates (SE) and if possible, interindividual/interoccasion variability (IIV/IOV) were estimated. Results Our results indicate that Duodopa absorption can be modelled with an absorption compartment with an added bioavailability fraction and a lag time. The most successful effect model was of sigmoid Emax type with a steep Hill coefficient and an effect compartment delay. Estimated parameter values are presented in the table. Conclusions The absorption and effect models were reasonably successful in fitting observed data and can be used in simulation experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized linear mixed models are flexible tools for modeling non-normal data and are useful for accommodating overdispersion in Poisson regression models with random effects. Their main difficulty resides in the parameter estimation because there is no analytic solution for the maximization of the marginal likelihood. Many methods have been proposed for this purpose and many of them are implemented in software packages. The purpose of this study is to compare the performance of three different statistical principles - marginal likelihood, extended likelihood, Bayesian analysis-via simulation studies. Real data on contact wrestling are used for illustration.