44 resultados para parabolic trough collector
em Dalarna University College Electronic Archive
Resumo:
The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This is mainly because of the higher present cost of the solar thermal power plants, but also for the time that is needed in order to build them. Though economic attractiveness of different Concentrating technologies varies, still PV power dominates the market. The price of CSP is expected to drop significantly in the near future and wide spread installation of them will follow. The main aim of this project is the creation of different relevant case studies on solar thermal power generation and a comparison betwwen them. The purpose of this detailed comparison is the techno-economic appraisal of a number of CSP systems and the understanding of their behaviour under various boundary conditions. The CSP technologies which will be examined are the Parabolic Trough, the Molten Salt Power Tower, the Linear Fresnel Mirrors and the Dish Stirling. These systems will be appropriatly sized and simulated. All of the simulations aim in the optimization of the particular system. This includes two main issues. The first is the achievement of the lowest possible levelized cost of electricity and the second is the maximization of the annual energy output (kWh). The project also aims in the specification of these factors which affect more the results and more specifically, in what they contribute to the cost reduction or the power generation. Also, photovoltaic systems will be simulated under same boundary conditions to facolitate a comparison between the PV and the CSP systems. Last but not leats, there will be a determination of the system which performs better in each case study.
Resumo:
The aim of this master thesis is an investigation of the thermal performance of a thermal compound parabolic concentrating (CPC) collector from Solarus. The collector consists of two troughs with absorbers which are coated with different types of paint with unknown properties. The lower and upper trough of the collector have been tested individually. In order to accomplish the performance of the two collectors, a thorough literature study in the fields of CPC technology, various test methods, test standards for solar thermal collectors as well as the latest articles relating on the subject were carried out. In addition, the set‐up of the thermal test rig was part of the thesis as well. The thermal performance was tested according to the steady state test method as described in the European standard 12975‐2. Furthermore, the thermal performance of a conventional flat plate collector was carried out for verification of the test method. The CPC‐Thermal collector from Solarus was tested in 2013 and the results showed four times higher values of the heat loss coefficient UL (8.4 W/m²K) than what has been reported for a commercial collector from Solarus. This value was assumed to be too large and it was assumed that the large value was a result of the test method used that time. Therefore, another aim was the comparison of the results achieved in this work with the results from the tests performed in 2013. The results of the thermal performance showed that the optical efficiency of the lower trough of the CPC‐T collector is 77±5% and the corresponding heat loss coefficient UL 4.84±0.20 W/m²K. The upper trough achieved an optical efficiency of 75±6 % and a heat loss coefficient UL of 6.45±0.27 W/m²K. The results of the heat loss coefficients are valid for temperature intervals between 20°C and 80°C. The different absorber paintings have a significant impact on the results, the lower trough performs overall better. The results achieved in this thesis show lower heat loss coefficients UL and higher optical efficiencies compared to the results from 2013.
Resumo:
This Thesis project is a part of the all-round automation of production of concentrating solar PV/T systems Absolicon X10. ABSOLICON Solar Concentrator AB has been invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate the shape of concentrating parabolic reflectors.On the basis of the requirements of the company administration and needs of real production process the operation conditions for the Laser testing rig were formulated. The basic concept to use laser radiation was defined.At the first step, the complex design of the whole system was made and division on the parts was defined. After the preliminary conducted simulations the function and operation conditions of the all parts were formulated.At the next steps, the detailed design of all the parts was conducted. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Laser-testing rig were assembled and tested. Software part, which controls the Laser-testing rig work, was created on the LabVIEW basis. To tune and test software part the special simulator was designed and assembled.When all parts were assembled in the complete system, the Laser-testing rig was tested, calibrated and tuned.In the workshop of Absolicon AB, the trial measurements were conducted and Laser-testing rig was installed in the production line at the plant in Soleftea.
Resumo:
Low concentrator PV-T hybrid systems produce both electricity and thermal energy; this fact increases the overall efficiency of the system and reduces the cost of solar electricity. These systems use concentrators which are optical devices that concentrate sunlight on to solar cells and reduce expensive solar cell area. This thesis work deals with the thermal evaluation of a PV-T collector from Solarus.Firstly the thermal efficiency of the low concentrator collector was characterized for the thermal-collector without PV cells on the absorber. Only two types of paint were on the absorber, one for each trough of the collector. Both paints are black one is glossy and the other is dull,. The thermal efficiency at no temperature difference between collector and ambient for these two types of paint was 0.65 and 0.64 respectively; the U-value was 8.4 W/m2°C for the trough with the glossy type of paint and 8.6 W/m2°C for the trough with dull type of paint. The annual thermal output of these two paints was calculated for two different geographic locations, Casablanca, Morocco and Älvkarleby, Sweden.Secondly the thermal efficiency was defined for the PV-T collector with PV cells on the absorber. The PV cells cover 85% of the absorber, without any paint on the rest of the absorber area. We also tested how the electrical power output influences the thermal power output of the PV-T collector. The thermal and total performances for the PV-T collector were only characterized with reflector sides, because of the lack of time we could not characterize them with transparent sides also.
Resumo:
The memebers of IEA (International Energy Agency) Task 14 (Advaced Active Solar Systems) met in Rome during January 1993. The latest developments in several countries were presented and discussed during this meeting. This report describes briefly the recent work carried out on small scale systems in the Domestic Hot Water (DHW) working group of Task 14, as reported by the representatives from Canada, Denmark, Germany, Holland and Switzerland. Klaus Lorenz, SERC, attended the meeting as observer and presented our work on small-tube heat exchangers. Several participants expressed their interest. A summary of his presentation is included in this report.
Resumo:
Two different concentrating mirrors have been constructed that resemble parabolic dish reflectors. Both mirrors are made of slightly curved strips of flat, bendable material. The strips of the most simplified mirror have only large-radius circles and straight lines as boundaries. The necessary equations for making the mirrors have been derived. Also a simple way to make a stiff, lightweight frame and support for the mirror strips has been developed. Models of the mirrors have been built and successfully used for cooking and baking.This report is an extended version of a paper to be published in Solar Energy that contains complete derivations of all mirror design equations.
Resumo:
Test method for integrated solar- biomass systems - Long term prediction trough short term measurementsSP Technical Research Institute of Sweden and SERC, Dalarna University have in cooperation developed a test method for integrated solar and biomass systems. The test method is performed under six days including two summer days, two winter days and two spring/autumn days true to real weather conditions and loads for a single family house. The aim of the test method is to get information about a Combisystem’s annual performance and operation throughout a short term test. Seven different solar Combisystems have been tested within the project together with a pellet boiler without solar collectors. In addition to that a comparative testing has been performed at the two laboratories at SP and at SERC on the same Combisystem. The test method developed within the project has been proved to withstand the aim of the project, which is to be able to compare the performance between the systems. The test method is also suitable for identification of possible operation problems so they can be taken care of and consequently improves the system.The project and the system testing reveal that it is in general favorable to combine biomass pellets with solar heating. Pellet boilers has normally a low performance during the summer period but combined with a solar collector the boiler can be switch off during this period. There are however big differences in performance between the tested. The efficiency of the pellet boiler is highly dependent of the operating conditions and elements like heat losses from the system, system configuration and control strategy have great influence of the performance of the system and the emissions. On the other hand, the performance and the size of the solar collectors have a minor effect on the overall system performance. There is obviously a big potential for improvement of the system´s performance and the developed test method is an essential way to implement this perfection.
Resumo:
Photovoltaic Thermal/Hybrid collectors are an emerging technology that combines PV and solar thermal collectors by producing heat and electricity simultaneously. In this paper, the electrical performance evaluation of a low concentrating PVT collector was done through two testing parts: power comparison and performance ratio testing. For the performance ratio testing, it is required to identify and measure the factors affecting the performance ratio on a low concentrating PVT collector. Factors such as PV cell configuration, collector acceptance angle, flow rate, tracking the sun, temperature dependence and diffuse to irradiance ratio. Solarus low concentrating PVT collector V12 was tested at Dalarna University in Sweden using the electrical equipment at the solar laboratory. The PV testing has showed differences between the two receivers. Back2 was producing 1.8 energy output more than Back1 throughout the day. Front1 and Front2 were almost the same output performance. Performance tests showed that the cell configuration for Receiver2 with cells grouping (6- 32-32-6) has proved to have a better performance ratio when to it comes to minimizing the shading effect leading to more output power throughout the day because of lowering the mismatch losses. Different factors were measured and presented in this thesis in chapter 5. With the current design, it has been obtained a peak power at STC of 107W per receiver. The solar cells have an electrical efficiency of approximately 19% while the maximum measured electrical efficiency for the collector was approximately 18 % per active cell area, in addition to a temperature coefficient of -0.53%/ ˚C. Finally a recommendation was done to help Solarus AB to know how much the electrical performance is affected during variable ambient condition and be able to use the results for analyzing and introducing new modification if needed.
Resumo:
Hybrid Photovoltaic Thermal (PVT) collectors are an emerging technology that combines PV and solar thermal systems in a single solar collector producing heat and electricity simultaneously. The focus of this thesis work is to evaluate the performance of unglazed open loop PVT air system integrated on a garage roof in Borlänge. As it is thought to have a significant potential for preheating ventilation of the building and improving the PV modules electrical efficiency. The performance evaluation is important to optimize the cooling strategy of the collector in order to enhance its electrical efficiency and maximize the production of thermal energy. The evaluation process involves monitoring the electrical and thermal energies for a certain period of time and investigating the cooling effect on the performance through controlling the air mass flow provided by a variable speed fan connected to the collector by an air distribution duct. The distribution duct transfers the heated outlet air from the collector to inside the building. The PVT air collector consists of 34 Solibro CIGS type PV modules (115 Wp for each module) which are roof integrated and have replaced the traditional roof material. The collector is oriented toward the south-west with a tilt of 29 ᵒ. The collector consists of 17 parallel air ducts formed between the PV modules and the insulated roof surface. Each air duct has a depth of 0.05 m, length of 2.38 m and width of 2.38 m. The air ducts are connected to each other through holes. The monitoring system is based on using T-type thermocouples to measure the relevant temperatures, air sensor to measure the air mass flow. These parameters are needed to calculate the thermal energy. The monitoring system contains also voltage dividers to measure the PV modules voltage and shunt resistance to measure the PV current, and AC energy meters which are needed to calculate the produced electrical energy. All signals recorded from the thermocouples, voltage dividers and shunt resistances are connected to data loggers. The strategy of cooling in this work was based on switching the fan on, only when the difference between the air duct temperature (under the middle of top of PV column) and the room temperature becomes higher than 5 °C. This strategy was effective in term of avoiding high electrical consumption by the fan, and it is recommended for further development. The temperature difference of 5 °C is the minimum value to compensate the heat losses in the collecting duct and distribution duct. The PVT air collector has an area of (Ac=32 m2), and air mass flow of 0.002 kg/s m2. The nominal output power of the collector is 4 kWppv (34 CIGS modules with 115 Wppvfor each module). The collector produces thermal output energy of 6.88 kWth/day (0.21 kWth/m2 day) and an electrical output energy of 13.46 kWhel/day (0.42 kWhel/m2 day) with cooling case. The PVT air collector has a daily thermal energy yield of 1.72 kWhth/kWppv, and a daily PV electrical energy yield of 3.36 kWhel /kWppv. The fan energy requirement in this case was 0.18 kWh/day which is very small compared to the electrical energy generated by the PV collector. The obtained thermal efficiency was 8 % which is small compared to the results reported in literature for PVT air collectors. The small thermal efficiency was due to small operating air mass flow. Therefore, the study suggests increasing the air mass flow by a factor of 25. The electrical efficiency was fluctuating around 14 %, which is higher than the theoretical efficiency of the PV modules, and this discrepancy was due to the poor method of recording the solar irradiance in the location. Due to shading effect, it was better to use more than one pyranometer.
Resumo:
A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations in Europe. The collector parameters used as input in the tool are compiled from tests according to EN12975, without any intermediate conversions. The main target group for this tool is test institutes and certification bodies that are intended to use it for conversion of collector model parameters (derived from performance tests) into a more user friendly quantity: the annual energy output. The energy output presented in the tool is expressed as kWh per collector module. A simplified treatment of performance for PVT collectors is added based on the assumption that the thermal part of the PVT collector can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations. © 2012 The Authors.
Resumo:
The main objective for this degree project is to implement an Application Availability Monitoring (AAM) system named Softek EnView for Fujitsu Services. The aim of implementing the AAM system is to proactively identify end user performance problems, such as application and site performance, before the actual end users experience them. No matter how well applications and sites are designed and nomatter how well they meet business requirements, they are useless to the end users if the performance is slow and/or unreliable. It is important for the customers to find out whether the end user problems are caused by the network or application malfunction. The Softek EnView was comprised of the following EnView components: Robot, Monitor, Reporter, Collector and Repository. The implemented system, however, is designed to use only some of these EnView elements: Robot, Reporter and depository. Robots can be placed at any key user location and are dedicated to customers, which means that when the number of customers increases, at the sametime the amount of Robots will increase. To make the AAM system ideal for the company to use, it was integrated with Fujitsu Services’ centralised monitoring system, BMC PATROL Enterprise Manager (PEM). That was actually the reason for deciding to drop the EnView Monitor element. After the system was fully implemented, the AAM system was ready for production. Transactions were (and are) written and deployed on Robots to simulate typical end user actions. These transactions are configured to run with certain intervals, which are defined collectively with customers. While they are driven against customers’ applicationsautomatically, transactions collect availability data and response time data all the time. In case of a failure in transactions, the robot immediately quits the transactionand writes detailed information to a log file about what went wrong and which element failed while going through an application. Then an alert is generated by a BMC PATROL Agent based on this data and is sent to the BMC PEM. Fujitsu Services’ monitoring room receives the alert, reacts to it according to the incident management process in ITIL and by alerting system specialists on critical incidents to resolve problems. As a result of the data gathered by the Robots, weekly reports, which contain detailed statistics and trend analyses of ongoing quality of IT services, is provided for the Customers.
Resumo:
This report discusses developing a software log tool for analysis of industrial processes. The target was to develop software that can help electro Engineers for monitor and fault finding in industrial processes. The tool is called PLS (Process log server), and is developed in Visual Studio.NET Framework 2005. PLS works as a client with Beijer Electronics OPC Server. The program is able to read data from PLC (Programmable Logic Controller), trough the OPC Server. PLS connects to all kind of controllers that is supported by the Beijer Electronics OPC Server. Signal data is stored in a database for later analysis. Chosen signals data can easily be exported into a text file. The text file is adopted for import to MS Office Excel. User manual [UM-07] is written as a separate document. The software acted stable through the function test. The final product becomes a first-rate tool that is simple to use. As an advantage, the software can be developed with more functions in the future.
Resumo:
This Thesis project is a part of the research conducted in Solar industry. ABSOLICON Solar Concentrator AB has invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate distribution of density of solar radiation in the focal line of the concentrated parabolic reflectors and to measure radiation from the artificial source of light being a calibration-testing tool.On the basis of the requirements of the company’s administration and needs of designing the concentrated reflectors the operation conditions for the Sun-Walker were formulated. As the first step, the complex design of the whole system was made and division on the parts was specified. After the preliminary conducted simulation of the functions and operation conditions of the all parts were formulated.As the next steps, the detailed design of all the parts was made. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Sun-Walker were assembled and tested. The software part, which controls the Sun-Walker work and conducts measurements of solar irradiation, was created on the LabVIEW basis. To tune and test the software part, the special simulator was designed and assembled.When all parts were assembled in the complete system, the Sun-Walker was tested, calibrated and tuned.
Resumo:
Concentrated solar power systems are expected to be sited in desert locations where the direct normal irradiation is above 1800 kWh/m2.year. These systems include large solar collector assemblies, which account for a significant share of the investment cost. Solarreflectors are the main components of these solar collector assemblies and dust/sand storms may affect their reflectance properties, either by soiling or by surface abrasion. While soiling can be reverted by cleaning, surface abrasion is a non reversible degradation.The aim of this project was to study the accelerated aging of second surface silvered thickglass solar reflectors under simulated sandstorm conditions and develop a multi-parametric model which relates the specular reflectance loss to dust/sand storm parameters: wind velocity, dust concentration and time of exposure. This project focused on the degradation caused by surface abrasion.Sandstorm conditions were simulated in a prototype environmental test chamber. Material samples (6cm x 6cm) were exposed to Arizona coarse test dust. The dust stream impactedthese material samples at a perpendicular angle. Both wind velocity and dust concentrationwere maintained at a stable level for each accelerated aging test. The total exposure time in the test chamber was limited to 1 hour. Each accelerated aging test was interrupted every 4 minutes to measure the specular reflectance of the material sample after cleaning.The accelerated aging test campaign had to be aborted prematurely due to a contamination of the dust concentration sensor. A robust multi-parametric degradation model could thus not be derived. The experimental data showed that the specular reflectance loss decreasedeither linearly or exponentially with exposure time, so that a degradation rate could be defined as a single modeling parameter. A correlation should be derived to relate this degradation rate to control parameters such as wind velocity and dust/sand concentration.The sandstorm chamber design would have to be updated before performing further accelerated aging test campaigns. The design upgrade should improve both the reliability of the test equipment and the repeatability of accelerated aging tests. An outdoor exposure test campaign should be launched in deserts to learn more about the intensity, frequencyand duration of dust/sand storms. This campaign would also serve to correlate the results of outdoor exposure tests with accelerated exposure tests in order to develop a robust service lifetime prediction model for different types of solar reflector materials.