11 resultados para objective analysis
em Dalarna University College Electronic Archive
Resumo:
This thesis analyzes the teaching material Caminando 3 from a neurodidactic perspective. The discipline of neurodidactics is young and controversial and the aim of this investigation is to present an understanding of the use of practical applications of neurodidactics in written material of education in Spanish as a second language. The methods applied are a quantitative and objective analysis of measurable aspects in Caminando 3 and a qualitative, subjective analysis which is interpreting fundamental understandings of language learning which Caminando 3 reflects in its structure and content. The results show that there are several aspects in Caminando 3 which are supported by the evidences and advices of the neurodidactic theories and simultaneously there are details in exercises and parts of the layup containing a level of repetition and prediction which are directly harmful to the process of acquisition, according to neurodidactic theories. The conclusion is that a more dynamic teaching book can be produced with guidelines that can be created using these results. Further investigations will have to measure the knowledge and success of the pupils to decide whether neurodidactics is a successful complement to traditional didactics of second language learning.
Resumo:
OBJECTIVES: To develop a method for objective assessment of fine motor timing variability in Parkinson’s disease (PD) patients, using digital spiral data gathered by a touch screen device. BACKGROUND: A retrospective analysis was conducted on data from 105 subjects including65 patients with advanced PD (group A), 15 intermediate patients experiencing motor fluctuations (group I), 15 early stage patients (group S), and 10 healthy elderly subjects (HE) were examined. The subjects were asked to perform repeated upper limb motor tasks by tracing a pre-drawn Archimedes spiral as shown on the screen of the device. The spiral tracing test was performed using an ergonomic pen stylus, using dominant hand. The test was repeated three times per test occasion and the subjects were instructed to complete it within 10 seconds. Digital spiral data including stylus position (x-ycoordinates) and timestamps (milliseconds) were collected and used in subsequent analysis. The total number of observations with the test battery were as follows: Swedish group (n=10079), Italian I group (n=822), Italian S group (n = 811), and HE (n=299). METHODS: The raw spiral data were processed with three data processing methods. To quantify motor timing variability during spiral drawing tasks Approximate Entropy (APEN) method was applied on digitized spiral data. APEN is designed to capture the amount of irregularity or complexity in time series. APEN requires determination of two parameters, namely, the window size and similarity measure. In our work and after experimentation, window size was set to 4 and similarity measure to 0.2 (20% of the standard deviation of the time series). The final score obtained by APEN was normalized by total drawing completion time and used in subsequent analysis. The score generated by this method is hence on denoted APEN. In addition, two more methods were applied on digital spiral data and their scores were used in subsequent analysis. The first method was based on Digital Wavelet Transform and Principal Component Analysis and generated a score representing spiral drawing impairment. The score generated by this method is hence on denoted WAV. The second method was based on standard deviation of frequency filtered drawing velocity. The score generated by this method is hence on denoted SDDV. Linear mixed-effects (LME) models were used to evaluate mean differences of the spiral scores of the three methods across the four subject groups. Test-retest reliability of the three scores was assessed after taking mean of the three possible correlations (Spearman’s rank coefficients) between the three test trials. Internal consistency of the methods was assessed by calculating correlations between their scores. RESULTS: When comparing mean spiral scores between the four subject groups, the APEN scores were different between HE subjects and three patient groups (P=0.626 for S group with 9.9% mean value difference, P=0.089 for I group with 30.2%, and P=0.0019 for A group with 44.1%). However, there were no significant differences in mean scores of the other two methods, except for the WAV between the HE and A groups (P<0.001). WAV and SDDV were highly and significantly correlated to each other with a coefficient of 0.69. However, APEN was not correlated to neither WAV nor SDDV with coefficients of 0.11 and 0.12, respectively. Test-retest reliability coefficients of the three scores were as follows: APEN (0.9), WAV(0.83) and SD-DV (0.55). CONCLUSIONS: The results show that the digital spiral analysis-based objective APEN measure is able to significantly differentiate the healthy subjects from patients at advanced level. In contrast to the other two methods (WAV and SDDV) that are designed to quantify dyskinesias (over-medications), this method can be useful for characterizing Off symptoms in PD. The APEN was not correlated to none of the other two methods indicating that it measures a different construct of upper limb motor function in PD patients than WAV and SDDV. The APEN also had a better test-retest reliability indicating that it is more stable and consistent over time than WAV and SDDV.
Resumo:
Objective: To develop a method for objective quantification of PD motor symptoms related to Off episodes and peak dose dyskinesias, using spiral data gathered by using a touch screen telemetry device. The aim was to objectively characterize predominant motor phenotypes (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Background: A retrospective analysis was conducted on recordings from 65 patients with advanced idiopathic PD from nine different clinics in Sweden, recruited from January 2006 until August 2010. In addition to the patient group, 10 healthy elderly subjects were recruited. Upper limb movement data were collected using a touch screen telemetry device from home environments of the subjects. Measurements with the device were performed four times per day during week-long test periods. On each test occasion, the subjects were asked to trace pre-drawn Archimedean spirals, using the dominant hand. The pre-drawn spiral was shown on the screen of the device. The spiral test was repeated three times per test occasion and they were instructed to complete it within 10 seconds. The device had a sampling rate of 10Hz and measured both position and time-stamps (in milliseconds) of the pen tip. Methods: Four independent raters (FB, DH, AJ and DN) used a web interface that animated the spiral drawings and allowed them to observe different kinematic features during the drawing process and to rate task performance. Initially, a number of kinematic features were assessed including ‘impairment’, ‘speed’, ‘irregularity’ and ‘hesitation’ followed by marking the predominant motor phenotype on a 3-category scale: tremor, bradykinesia and/or choreatic dyskinesia. There were only 2 test occasions for which all the four raters either classified them as tremor or could not identify the motor phenotype. Therefore, the two main motor phenotype categories were bradykinesia and dyskinesia. ‘Impairment’ was rated on a scale from 0 (no impairment) to 10 (extremely severe) whereas ‘speed’, ‘irregularity’ and ‘hesitation’ were rated on a scale from 0 (normal) to 4 (extremely severe). The proposed data-driven method consisted of the following steps. Initially, 28 spatiotemporal features were extracted from the time series signals before being presented to a Multilayer Perceptron (MLP) classifier. The features were based on different kinematic quantities of spirals including radius, angle, speed and velocity with the aim of measuring the severity of involuntary symptoms and discriminate between PD-specific (bradykinesia) and/or treatment-induced symptoms (dyskinesia). A Principal Component Analysis was applied on the features to reduce their dimensions where 4 relevant principal components (PCs) were retained and used as inputs to the MLP classifier. Finally, the MLP classifier mapped these components to the corresponding visually assessed motor phenotype scores for automating the process of scoring the bradykinesia and dyskinesia in PD patients whilst they draw spirals using the touch screen device. For motor phenotype (bradykinesia vs. dyskinesia) classification, the stratified 10-fold cross validation technique was employed. Results: There were good agreements between the four raters when rating the individual kinematic features with intra-class correlation coefficient (ICC) of 0.88 for ‘impairment’, 0.74 for ‘speed’, 0.70 for ‘irregularity’, and moderate agreements when rating ‘hesitation’ with an ICC of 0.49. When assessing the two main motor phenotype categories (bradykinesia or dyskinesia) in animated spirals the agreements between the four raters ranged from fair to moderate. There were good correlations between mean ratings of the four raters on individual kinematic features and computed scores. The MLP classifier classified the motor phenotype that is bradykinesia or dyskinesia with an accuracy of 85% in relation to visual classifications of the four movement disorder specialists. The test-retest reliability of the four PCs across the three spiral test trials was good with Cronbach’s Alpha coefficients of 0.80, 0.82, 0.54 and 0.49, respectively. These results indicate that the computed scores are stable and consistent over time. Significant differences were found between the two groups (patients and healthy elderly subjects) in all the PCs, except for the PC3. Conclusions: The proposed method automatically assessed the severity of unwanted symptoms and could reasonably well discriminate between PD-specific and/or treatment-induced motor symptoms, in relation to visual assessments of movement disorder specialists. The objective assessments could provide a time-effect summary score that could be useful for improving decision-making during symptom evaluation of individualized treatment when the goal is to maximize functional On time for patients while minimizing their Off episodes and troublesome dyskinesias.
Resumo:
A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.
Resumo:
The main objective for this degree project was to analyze the Endpoint Security Solutions developed by Cisco, Microsoft and a third minor company solution represented by InfoExpress. The different solutions proposed are Cisco Network Admission Control, Microsoft Network Access Protection and InfoExpress CyberGatekeeper. An explanation of each solution functioning is proposed as well as an analysis of the differences between those solutions. This thesis work also proposes a tutorial for the installation of Cisco Network Admission Control for an easier implementation. The research was done by reading articles on the internet and by experimenting the Cisco Network Admission Control solution. My background knowledge about Cisco routing and ACL was also used. Based on the actual analysis done in this thesis, a conclusion was drawn that all existing solutions are not yet ready for large-scale use in corporate networks. Moreover all solutions are proprietary and incompatible. The future possible standard for Endpoint solution might be driven by Cisco and Microsoft and a rude competition begins between those two giants.
Resumo:
Objective: We present a new evaluation of levodopa plasma concentrations and clinical effects during duodenal infusion of a levodopa/carbidopa gel (Duodopa ) in 12 patients with advanced Parkinson s disease (PD), from a study reported previously (Nyholm et al, Clin Neuropharmacol 2003; 26(3): 156-163). One objective was to investigate in what state of PD we can see the greatest benefits with infusion compared with corresponding oral treatment (Sinemet CR). Another objective was to identify fluctuating response to levodopa and correlate to variables related to disease progression. Methods: We have computed mean absolute error (MAE) and mean squared error (MSE) for the clinical rating from -3 (severe parkinsonism) to +3 (severe dyskinesia) as measures of the clinical state over the treatment periods of the study. Standard deviation (SD) of the rating was used as a measure of response fluctuations. Linear regression and visual inspection of graphs were used to estimate relationships between these measures and variables related to disease progression such as years on levodopa (YLD) or unified PD rating scale part II (UPDRS II).Results: We found that MAE for infusion had a strong linear correlation to YLD (r2=0.80) while the corresponding relation for oral treatment looked more sigmoid, particularly for the more advanced patients (YLD>18).
Resumo:
Objective: To compare results from various tapping tests with diary responses in advanced PD. Background: A home environment test battery for assessing patient state in advanced PD, consisting of diary assessments and motor tests was constructed for a hand computer with touch screen and mobile communication. The diary questions: 1. walking, 2. time in off , on and dyskinetic states, 3. off at worst, 4. dyskinetic at worst, 5. cramps, and 6. satisfied with function, relate to the recent past. Question 7, self-assessment, allows seven steps from -3 ( very off ) to +3 ( very dyskinetic ) and relate to right now. Tapping tests outline: 8. Alternately tapping two fields (un-cued) with right hand 9. Same as 8 but using left hand 10. Tapping an active field (out of two) following a system-generated rhythm (increasing speed) with the dominant hand 11. Tapping an active field (out of four) that randomly changes location when tapped using the dominant hand Methods: 65 patients (currently on Duodopa, or candidates for this treatment) entered diary responses and performed tapping tests four times per day during one to six periods of seven days length. In total there were 224 test periods and 6039 test occasions. Speed for tapping test 10 was discardedand tests 8 and 9 were combined by taking means. Descriptive statistics were used to present the variation of the test variables in relation to self assessment (question 7). Pearson correlation coefficients between speed and accuracy (percent correct) in tapping tests and diary responses were calculated. Results: Mean compliance (percentage completed test occasions per test period) was 83% and the median was 93%. There were large differences in both mean tapping speed and accuracy between the different self-assessed states. Correlations between diary responses and tapping results were small (-0.2 to 0.3, negative values for off-time and dyskinetic-time that had opposite scale directions). Correlations between tapping results were all positive (0.1 to 0.6). Conclusions: The diary responses and tapping results provided different information. The low correlations can partly be explained by the fact that questions related to the past and by random variability, which could be reduced by taking means over test periods. Both tapping speed and accuracy reflect the motor function of the patient to a large extent.
Resumo:
This paper presents the development and evaluation of a method for enabling quantitative and automatic scoring of alternating tapping performance of patients with Parkinson’s disease (PD). Ten healthy elderly subjects and 95 patients in different clinical stages of PD have utilized a touch-pad handheld computer to perform alternate tapping tests in their home environments. First, a neurologist used a web-based system to visually assess impairments in four tapping dimensions (‘speed’, ‘accuracy’, ‘fatigue’ and ‘arrhythmia’) and a global tapping severity (GTS). Second, tapping signals were processed with time series analysis and statistical methods to derive 24 quantitative parameters. Third, principal component analysis was used to reduce the dimensions of these parameters and to obtain scores for the four dimensions. Finally, a logistic regression classifier was trained using a 10-fold stratified cross-validation to map the reduced parameters to the corresponding visually assessed GTS scores. Results showed that the computed scores correlated well to visually assessed scores and were significantly different across Unified Parkinson’s Disease Rating Scale scores of upper limb motor performance. In addition, they had good internal consistency, had good ability to discriminate between healthy elderly and patients in different disease stages, had good sensitivity to treatment interventions and could reflect the natural disease progression over time. In conclusion, the automatic method can be useful to objectively assess the tapping performance of PD patients and can be included in telemedicine tools for remote monitoring of tapping.
Resumo:
Background: Previous assessment methods for PG recognition used sensor mechanisms for PG that may cause discomfort. In order to avoid stress of applying wearable sensors, computer vision (CV) based diagnostic systems for PG recognition have been proposed. Main constraints in these methods are the laboratory setup procedures: Novel colored dresses for the patients were specifically designed to segment the test body from a specific colored background. Objective: To develop an image processing tool for home-assessment of Parkinson Gait(PG) by analyzing motion cues extracted during the gait cycles. Methods: The system is based on the idea that a normal body attains equilibrium during the gait by aligning the body posture with the axis of gravity. Due to the rigidity in muscular tone, persons with PD fail to align their bodies with the axis of gravity. The leaned posture of PD patients appears to fall forward. Whereas a normal posture exhibits a constant erect posture throughout the gait. Patients with PD walk with shortened stride angle (less than 15 degrees on average) with high variability in the stride frequency. Whereas a normal gait exhibits a constant stride frequency with an average stride angle of 45 degrees. In order to analyze PG, levodopa-responsive patients and normal controls were videotaped with several gait cycles. First, the test body is segmented in each frame of the gait video based on the pixel contrast from the background to form a silhouette. Next, the center of gravity of this silhouette is calculated. This silhouette is further skeletonized from the video frames to extract the motion cues. Two motion cues were stride frequency based on the cyclic leg motion and the lean frequency based on the angle between the leaned torso tangent and the axis of gravity. The differences in the peaks in stride and lean frequencies between PG and normal gait are calculated using Cosine Similarity measurements. Results: High cosine dissimilarity was observed in the stride and lean frequencies between PG and normal gait. High variations are found in the stride intervals of PG whereas constant stride intervals are found in the normal gait. Conclusions: We propose an algorithm as a source to eliminate laboratory constraints and discomfort during PG analysis. Installing this tool in a home computer with a webcam allows assessment of gait in the home environment.
Resumo:
OBJECTIVE: This study aimed to assess women´s acceptability of diagnosis and treatment of incomplete abortion with misoprostol by midwives, compared with physicians. METHODS: This was an analysis of secondary outcomes from a multi-centre randomized controlled equivalence trial at district level in Uganda. Women with first trimester incomplete abortion were randomly allocated to clinical assessment and treatment with misoprostol by a physician or a midwife. The randomisation (1:1) was done in blocks of 12 and stratified for health care facility. Acceptability was measured in expectations and satisfaction at a follow up visit 14-28 days following treatment. Analysis of women's overall acceptability was done using a generalized linear mixed-effects model with an equivalence range of -4% to 4%. The study was not masked. The trial is registered at ClinicalTrials.org, NCT 01844024. RESULTS: From April 2013 to June 2014, 1108 women were assessed for eligibility of which 1010 were randomized (506 to midwife and 504 to physician). 953 women were successfully followed up and included in the acceptability analysis. 95% (904) of the participants found the treatment satisfactory and overall acceptability was found to be equivalent between the two study groups. Treatment failure, not feeling calm and safe following treatment, experiencing severe abdominal pain or heavy bleeding following treatment, were significantly associated with non-satisfaction. No serious adverse events were recorded. CONCLUSIONS: Treatment of incomplete abortion with misoprostol by midwives and physician was highly, and equally, acceptable to women. TRIAL REGISTRATION: ClinicalTrials.gov NCT01844024.
Resumo:
Background: Studies evaluating acceptability of simplified follow-up after medical abortion have focused on high-resource or urban settings where telephones, road connections, and modes of transport are available and where women have formal education. Objective: To investigate women's acceptability of home-assessment of abortion and whether acceptability of medical abortion differs by in-clinic or home-assessment of abortion outcome in a low-resource setting in India. Design: Secondary outcome of a randomised, controlled, non-inferiority trial. Setting Outpatient primary health care clinics in rural and urban Rajasthan, India. Population: Women were eligible if they sought abortion with a gestation up to 9 weeks, lived within defined study area and agreed to follow-up. Women were ineligible if they had known contraindications to medical abortion, haemoglobin < 85mg/l and were below 18 years. Methods: Abortion outcome assessment through routine clinic follow-up by a doctor was compared with home-assessment using a low-sensitivity pregnancy test and a pictorial instruction sheet. A computerized random number generator generated the randomisation sequence (1: 1) in blocks of six. Research assistants randomly allocated eligible women who opted for medical abortion (mifepristone and misoprostol), using opaque sealed envelopes. Blinding during outcome assessment was not possible. Main outcome measures: Women's acceptability of home-assessment was measured as future preference of follow-up. Overall satisfaction, expectations, and comparison with previous abortion experiences were compared between study groups. Results: 731 women were randomized to the clinic follow-up group (n = 353) or home-assessment group (n = 378). 623 (85%) women were successfully followed up, of those 597 (96%) were satisfied and 592 (95%) found the abortion better or as expected, with no difference between study groups. The majority, 355 (57%) women, preferred home-assessment in the event of a future abortion. Significantly more women, 284 (82%), in the home-assessment group preferred home-assessment in the future, as compared with 188 (70%) of women in the clinic follow-up group, who preferred clinic follow-up in the future (p < 0.001). Conclusion: Home-assessment is highly acceptable among women in low-resource, and rural, settings. The choice to follow-up an early medical abortion according to women's preference should be offered to foster women's reproductive autonomy.