6 resultados para new type AgInSbtTe phase change films

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Choosing a new plastic material for a container includes several different steps. In this case,the Finnish company Hackman needed a new type of packaging material for theircutlery- and kitchentool series »Hackman tools«. The project was carried out in cooperationwith the design agency Ytterborn & Fuentes, which has Hackman as a client.Several different demands were put on the material in order to fulfill as many of the clientswishes as possible. The most urgent problem with the existing container was the difficultysfor the customer to clearly see the contents in the container. Because of this problemthe customer tried to open the container in the shop. To avoid this from happening,Hackman wanted a more transparent plastic material that still fulfilled all other necessaryproperties such as strength, viscosity, printability, sealability and exhaustion strength.The final result and recommendation of a polypropylen-plastic (Evacast) was based ondetailed studies of packaging plastics and their properties as well as discussions with plasticconvertersand suppliers. The recommended plastic is avaliable in several different modelsthat fulfill all demands on material properties, environmental aspects, cost aspects and transparency.Apart from the material problem the project also included drafting some sketches and ideason new construction solutions for the container. The construction of the exsisting containerwas also a problem because of its complexity. As a result of the change of material it has beenpossible to simplify the construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper examines building integrated solar collectors with absorbers of polymeric materials. Efficiency measurements of façade-integrated collectors with non-selective black and spectrally selective coloured absorbers are carried out. The performance of the polymeric absorber was compared with solar glass and polycarbonate twin-wall sheets as collector cover. Simulations demonstrate a high solar fraction for a solar combisystem with façade collectors for a well-insulated house in a Nordic climate. Two examples of house concepts with façade collectors are presented which address a new type of customer than the solar enthusiasts with special interest in renewable energy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the frame of the project REBUS, "Competitive solar heating systems for residential buildings", which is financed by Nordic Energy Research, a new type of compact solar combisystem with high degree of prefabrication was developed. A hydraulic and control concept was designed with the goal to get highest system efficiency for use with either a condensing natural gas boiler or a pellet boiler. Especially when using the potential of high peak power of modern condensing natural gas boilers, a new operation strategy of a natural gas boiler/solar combisystem can increase the energy savings of a small solar combisystem by about 80% compared to conventional operation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a Nordic climate, space heating (SH) and domestic hot water (DHW) used in buildings constitute a considerable part of the total energy use in the country. For 2010, energy used for SH and DHW amounted to almost 90 TWh in Sweden which corresponds to 60 % of the energy used in the residential and service sector, or almost 24 % of the total final energy use for the country. Storing heat and cold with the use of thermal energy storage (TES) can be one way of increasing the energy efficiency of a building by opening up possibilities for alternative sources of heat or cold through a reduced mismatch between supply and demand. Thermal energy storage without the use of specific control systems are said to be passive and different applications using passive TES have been shown to increase energy efficiency and/or reduce power peaks of systems supplying the heating and cooling needs of buildings, as well as having an effect on the indoor climate. Results are however not consistent between studies and focus tend to be on the reduction of cooling energy or cooling power peaks. In this paper, passive TES introduced through an increased thermal mass in the building envelope to two single family houses with different insulation standard is investigated with building energy simulations. A Nordic climate is used and the focus of this study is both on the reduction of space heating demand and space heating power, as well as on reduction of excess temperatures in residential single family houses without active cooling systems. Care is taken to keep the building envelope characteristics other than the thermal mass equal for all cases so that any observations made can be derived to the change in thermal mass. Results show that increasing the sensible thermal mass in a single family house can reduce the heating demand only slightly (1-4 %) and reduce excess temperatures (temperatures above 24 degrees C) by up to 20 %. Adding a layer of PCM (phase change materials) to the light building construction can give similar reduction in heating demand and excess temperatures, however the phase change temperature is important for the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baby boomers and elderly care: expectations in print media about a new kind of care users The Swedish baby boomer generation – known as the forties generation – has been characterized as youthful and powerful. At present, members of this generation are entering the category of old age and in about ten years they will start reaching ages where the likelihood of encountering elderly care increases significantly. The present study reports on how this expected meeting has been discussed in Swedish newspapers. Data consisted of 481 articles during the period 1995–2012 and was analyzed through qualitative content analysis. Results show that the generation was predicted to become a new type of demanding and self-conscious care users. Claims were backed by descriptions of formative events and typical characteristics that were projected onto a future as care user. Such projections tended to portray care users of present time as passive and submissive, and partly responsible for problems associated with elderly care