1 resultado para multiple approach
em Dalarna University College Electronic Archive
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (18)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (47)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (240)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (37)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (22)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (11)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (10)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (8)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Gulbenkian de Ciência (1)
- Instituto Nacional de Saúde de Portugal (2)
- Instituto Politécnico do Porto, Portugal (10)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (7)
- Nottingham eTheses (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (36)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (32)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo España (2)
- Scielo Saúde Pública - SP (9)
- Scielo Uruguai (1)
- Scientific Open-access Literature Archive and Repository (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (15)
- Universidade do Minho (5)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universita di Parma (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (42)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (172)
- University of Washington (2)
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.