3 resultados para multi-disciplinary design optimisation
em Dalarna University College Electronic Archive
Resumo:
The cost of a road construction over its service life is a function of design, quality of construction as well as maintenance strategies and operations. An optimal life-cycle cost for a road requires evaluations of the above mentioned components. Unfortunately, road designers often neglect a very important aspect, namely, the possibility to perform future maintenance activities. Focus is mainly directed towards other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This doctoral thesis presents the results of a research project aimed to increase consideration of road maintenance aspects in the planning and design process. The following subgoals were established: Identify the obstacles that prevent adequate consideration of future maintenance during the road planning and design process; and Examine optimisation of life-cycle costs as an approach towards increased efficiency during the road planning and design process. The research project started with a literature review aimed at evaluating the extent to which maintenance aspects are considered during road planning and design as an improvement potential for maintenance efficiency. Efforts made by road authorities to increase efficiency, especially maintenance efficiency, were evaluated. The results indicated that all the evaluated efforts had one thing in common, namely ignorance of the interrelationship between geometrical road design and maintenance as an effective tool to increase maintenance efficiency. Focus has mainly been on improving operating practises and maintenance procedures. This fact might also explain why some efforts to increase maintenance efficiency have been less successful. An investigation was conducted to identify the problems and difficulties, which obstruct due consideration of maintainability during the road planning and design process. A method called “Change Analysis” was used to analyse data collected during interviews with experts in road design and maintenance. The study indicated a complex combination of problems which result in inadequate consideration of maintenance aspects when planning and designing roads. The identified problems were classified into six categories: insufficient consulting, insufficient knowledge, regulations and specifications without consideration of maintenance aspects, insufficient planning and design activities, inadequate organisation and demands from other authorities. Several urgent needs for changes to eliminate these problems were identified. One of the problems identified in the above mentioned study as an obstacle for due consideration of maintenance aspects during road design was the absence of a model for calculating life-cycle costs for roads. Because of this lack of knowledge, the research project focused on implementing a new approach for calculating and analysing life-cycle costs for roads with emphasis on the relationship between road design and road maintainability. Road barriers were chosen as an example. The ambition is to develop this approach to cover other road components at a later stage. A study was conducted to quantify repair rates for barriers and associated repair costs as one of the major maintenance costs for road barriers. A method called “Case Study Research Method” was used to analyse the effect of several factors on barrier repairs costs, such as barrier type, road type, posted speed and seasonal effect. The analyses were based on documented data associated with 1625 repairs conducted in four different geographical regions in Sweden during 2006. A model for calculation of average repair costs per vehicle kilometres was created. Significant differences in the barrier repair costs were found between the studied barrier types. In another study, the injuries associated with road barrier collisions and the corresponding influencing factors were analysed. The analyses in this study were based on documented data from actual barrier collisions between 2005 and 2008 in Sweden. The result was used to calculate the cost for injuries associated with barrier collisions as a part of the socio-economic cost for road barriers. The results showed significant differences in the number of injuries associated with collisions with different barrier types. To calculate and analyse life-cycle costs for road barriers a new approach was developed based on a method called “Activity-based Life-cycle Costing”. By modelling uncertainties, the presented approach gives a possibility to identify and analyse factors crucial for optimising life-cycle costs. The study showed a great potential to increase road maintenance efficiency through road design. It also showed that road components with low investment costs might not be the best choice when including maintenance and socio-economic aspects. The difficulties and problems faced during the collection of data for calculating life-cycle costs for road barriers indicated a great need for improving current data collecting and archiving procedures. The research focused on Swedish road planning and design. However, the conclusions can be applied to other Nordic countries, where weather conditions and road design practices are similar. The general methodological approaches used in this research project may be applied also to other studies.
Resumo:
In this article, the prevailing official view of supervision as a regulatory instrument is examined as it applies to the social services sector in Sweden. The study is based on a comparison of the views expressed on the design of supervision as a regulatory instrument by two government commissions, the Supervision Commission and the Commission on Supervision within the Social Services (UTIS), and on the positions taken by the Government regarding the definitions of the concept of supervision proposed by these commissions. The view of supervision as a regulatory instrument expressed in these policy documents is analysed with the help of a theoretical framework describing the components, their functions and the governance characteristics of control systems. In the framework separate interrelated characteristics of the components are identified and summarized into two models of control systems. The analysis shows that supervision in the Swedish social services sector can be described in terms of both a disciplinary and non-disciplinary system. By its system theoretical basis and the identification of interrelated characteristics the study contributes to a broadened understanding of the construction and functions of supervision as a regulatory instrument and of how supervision within the Swedish social sector is meant to be designed.
Resumo:
Internet of Things är ett samlingsbegrepp för den utveckling som innebär att olika typer av enheter kan förses med sensorer och datachip som är uppkopplade mot internet. En ökad mängd data innebär en ökad förfrågan på lösningar som kan lagra, spåra, analysera och bearbeta data. Ett sätt att möta denna förfrågan är att använda sig av molnbaserade realtidsanalystjänster. Multi-tenant och single-tenant är två typer av arkitekturer för molnbaserade realtidsanalystjänster som kan användas för att lösa problemen med hanteringen av de ökade datamängderna. Dessa arkitekturer skiljer sig åt när det gäller komplexitet i utvecklingen. I detta arbete representerar Azure Stream Analytics en multi-tenant arkitektur och HDInsight/Storm representerar en single-tenant arkitektur. För att kunna göra en jämförelse av molnbaserade realtidsanalystjänster med olika arkitekturer, har vi valt att använda oss av användbarhetskriterierna: effektivitet, ändamålsenlighet och användarnöjdhet. Vi kom fram till att vi ville ha svar på följande frågor relaterade till ovannämnda tre användbarhetskriterier: • Vilka likheter och skillnader kan vi se i utvecklingstider? • Kan vi identifiera skillnader i funktionalitet? • Hur upplever utvecklare de olika analystjänsterna? Vi har använt en design and creation strategi för att utveckla två Proof of Concept prototyper och samlat in data genom att använda flera datainsamlingsmetoder. Proof of Concept prototyperna inkluderade två artefakter, en för Azure Stream Analytics och en för HDInsight/Storm. Vi utvärderade dessa genom att utföra fem olika scenarier som var för sig hade 2-5 delmål. Vi simulerade strömmande data genom att låta en applikation kontinuerligt slumpa fram data som vi analyserade med hjälp av de två realtidsanalystjänsterna. Vi har använt oss av observationer för att dokumentera hur vi arbetade med utvecklingen av analystjänsterna samt för att mäta utvecklingstider och identifiera skillnader i funktionalitet. Vi har även använt oss av frågeformulär för att ta reda på vad användare tyckte om analystjänsterna. Vi kom fram till att Azure Stream Analytics initialt var mer användbart än HDInsight/Storm men att skillnaderna minskade efter hand. Azure Stream Analytics var lättare att arbeta med vid simplare analyser medan HDInsight/Storm hade ett bredare val av funktionalitet.