2 resultados para motor cortex complex

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims Evaluating status in patients with motor fluctuations is complex and occasional observations/measurements do not give an adequate picture as to the time spent in different states. We developed a test battery to assess advanced Parkinson patients' status consisting of diary assessments and motor tests. This battery was constructed and implemented on a handheld computer with built-in mobile communication. In fluctuating patients, it should typically be used several times daily in the home environment, over periods of about one week. The aim of this battery is to provide status information in order to evaluate treatment effects in clinical practice and research, follow up treatments and disease progression and predict outcome to optimize treatment strategy. Methods Selection of diary questions was based on a previous study with Duodopa® (DIREQT). Tapping tests (with and without visual cueing) and a spiral drawing test were added. Rapid prototyping was used in development of the user interface. An evaluation with two pilot patients was performed before and after receiving new treatments for advanced disease (one received Duodopa® and one received DBS). Speed and proportion missed taps were calculated for the tapping tests and entropy of the radial drawing velocity was calculated for the spiral tests. Test variables were evaluated using non-parametric statistics. Results Post-treatment improvement was detected in both patients in many of the test variables. Conclusions Although validation work remains, preliminary results are promising and the test battery is currently being evaluated in a long-term health economics study with Duodopa® (DAPHNE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is reviewing objective assessments of Parkinson’s disease(PD) motor symptoms, cardinal, and dyskinesia, using sensor systems. It surveys the manifestation of PD symptoms, sensors that were used for their detection, types of signals (measures) as well as their signal processing (data analysis) methods. A summary of this review’s finding is represented in a table including devices (sensors), measures and methods that were used in each reviewed motor symptom assessment study. In the gathered studies among sensors, accelerometers and touch screen devices are the most widely used to detect PD symptoms and among symptoms, bradykinesia and tremor were found to be mostly evaluated. In general, machine learning methods are potentially promising for this. PD is a complex disease that requires continuous monitoring and multidimensional symptom analysis. Combining existing technologies to develop new sensor platforms may assist in assessing the overall symptom profile more accurately to develop useful tools towards supporting better treatment process.