1 resultado para mixing and phase separation
em Dalarna University College Electronic Archive
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (46)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (64)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (24)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (69)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Brock University, Canada (6)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (72)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (19)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (23)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (8)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (15)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (6)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (22)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (8)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (7)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (11)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (58)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (18)
- Repositório da Produção Científica e Intelectual da Unicamp (7)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (4)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (119)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (31)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (21)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (12)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (35)
- Université de Montréal (2)
- Université de Montréal, Canada (12)
- University of Michigan (7)
- University of Queensland eSpace - Australia (58)
- University of Washington (4)
- WestminsterResearch - UK (1)
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.