3 resultados para medical information extraction
em Dalarna University College Electronic Archive
Resumo:
Traffic Control Signs or destination boards on roadways offer significant information for drivers. Regulation signs tell something like your speed, turns, etc; Warning signs warn drivers of conditions ahead to help them avoid accidents; Destination signs show distances and directions to various locations; Service signs display location of hospitals, gas and rest areas etc. Because the signs are so important and there is always a certain distance from them to drivers, to let the drivers get information clearly and easily even in bad weather or other situations. The idea is to develop software which can collect useful information from a special camera which is mounted in the front of a moving car to extract the important information and finally show it to the drivers. For example, when a frame contains on a destination drive sign board it will be text something like "Linkoping 50",so the software should extract every character of "Linkoping 50", compare them with the already known character data in the database. if there is extracted character match "k" in the database then output the destination name and show to the driver. In this project C++ will be used to write the code for this software.
Resumo:
Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic. The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.
Resumo:
Background: The Swedish Maternal Health Care Register (MHCR) is a national quality register that has been collecting pregnancy, delivery, and postpartum data since 1999. A substantial revision of the MHCR resulted in a Web-based version of the register in 2010. Although MHCR provides data for health care services and research, the validity of the MHCR data has not been evaluated. This study investigated degree of coverage and internal validity of specific variables in the MHCR and identified possible systematic errors. Methods: This cross-sectional observational study compared pregnancy and delivery data in medical records with corresponding data in the MHCR. The medical record was considered the gold standard. The medical records from nine Swedish hospitals were selected for data extraction. This study compared data from 878 women registered in both medical records and in the MHCR. To evaluate the quality of the initial data extraction, a second data extraction of 150 medical records was performed. Statistical analyses were performed for degree of coverage, agreement and correlation of data, and sensitivity and specificity. Results: Degree of coverage of specified variables in the MHCR varied from 90.0% to 100%. Identical information in both medical records and the MHCR ranged from 71.4% to 99.7%. For more than half of the investigated variables, 95% or more of the information was identical. Sensitivity and specificity were analysed for binary variables. Probable systematic errors were identified for two variables. Conclusions: When comparing data from medical records and data registered in the MHCR, most variables in the MHCR demonstrated good to very good degree of coverage, agreement, and internal validity. Hence, data from the MHCR may be regarded as reliable for research as well as for evaluating, planning, and decision-making with respect to Swedish maternal health care services.