9 resultados para learning classifier systems
em Dalarna University College Electronic Archive
Resumo:
With the rapid advancement of the webtechnology, more and more educationalresources, including software applications forteaching/learning methods, are available acrossthe web, which enables learners to access thelearning materials and use various ways oflearning at any time and any place. Moreover,various web-based teaching/learning approacheshave been developed during the last decade toenhance the capability of both educators andlearners. Particularly, researchers from bothcomputer science and education are workingtogether, collaboratively focusing ondevelopment of pedagogically enablingtechnologies which are believed to improve theinfrastructure of education systems andprocesses, including curriculum developmentmodels, teaching/learning methods, managementof educational resources, systematic organizationof communication and dissemination ofknowledge and skills required by and adapted tousers. Despite of its fast development, however,there are still great gaps between learningintentions, organization of supporting resources,management of educational structures,knowledge points to be learned and interknowledgepoint relationships such as prerequisites,assessment of learning outcomes, andtechnical and pedagogic approaches. Moreconcretely, the issues have been widelyaddressed in literature include a) availability andusefulness of resources, b) smooth integration ofvarious resources and their presentation, c)learners’ requirements and supposed learningoutcomes, d) automation of learning process interms of its schedule and interaction, and e)customization of the resources and agilemanagement of the learning services for deliveryas well as necessary human interferences.Considering these problems and bearing in mindthe advanced web technology of which weshould make full use, in this report we willaddress the following two aspects of systematicarchitecture of learning/teaching systems: 1)learning objects – a semantic description andorganization of learning resources using the webservice models and methods, and 2) learningservices discovery and learning goals match foreducational coordination and learning serviceplanning.
Resumo:
This thesis focuses on the adaptation of formal education to people’s technology- use patterns, theirtechnology-in-practice, where the ubiquitous use of mobile technologies is central. The research question is: How can language learning practices occuring in informal learning environments be effectively integrated with formal education through the use of mobile technology? The study investigates the technical, pedagogical, social and cultural challenges involved in a design science approach. The thesis consists of four studies. The first study systematises MALL (mobile-assisted language learning) research. The second investigates Swedish and Chinese students’ attitudes towards the use of mobile technology in education. The third examines students’ use of technology in an online language course, with a specific focus on their learning practices in informal learning contexts and their understanding of how this use guides their learning. Based on the findings, a specifically designed MALL application was built and used in two courses. Study four analyses the app use in terms of students’ perceived level of self-regulation and structuration. The studies show that technology itself plays a very important role in reshaping peoples’ attitudes and that new learning methods are coconstructed in a sociotechnical system. Technology’s influence on student practices is equally strong across borders. Students’ established technologies-in-practice guide the ways they approach learning. Hence, designing effective online distance education involves three interrelated elements: technology, information, and social arrangements. This thesis contributes to mobile learning research by offering empirically and theoretically grounded insights that shift the focus from technology design to design of information systems.
Resumo:
The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.
Resumo:
Mobile assisted language learning (MALL) is a subarea of the growing field of mobile learning (mLearning) research which increasingly attracts the attention of scholars. This study provides a systematic review of MALL research within the specific area of second language acquisition during the period 2007 - 2012 in terms of research approaches, methods, theories and models, as well as results in the form of linguistic knowledge and skills. The findings show that studies of mobile technology use in different aspects of language learning support the hypothesis that mobile technology can enhance learners’ second language acquisition. However, most of the reviewed studies are experimental, small-scale, and conducted within a short period of time. There is also a lack of cumulative research; most theories and concepts are used only in one or a few papers. This raises the issue of the reliability of findings over time, across changing technologies, and in terms of scalability. In terms of gained linguistic knowledge and skills, attention is primarily on learners’ vocabulary acquisition, listening and speaking skills, and language acquisition in more general terms.
Resumo:
A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.
Resumo:
This paper seeks to answer the research question "How does the flipped classroom affect students’ learning strategies?" In e-learning research, several studies have focused on how students and teachers perceive the flipped classroom approach. In general, these studies have reported pleasing results. Nonetheless, few, if any, studies have attempted to find out the potential effects of the flipped classroom approach on how students learn. This study was based on two cases: 1) a business modelling course and 2) a research methodology course. In both cases, participating students were from information systems courses at Dalarna University in Sweden. Recorded lectures replaced regular lectures. The recorded lectures were followed by seminars that focused on the learning content of each lecture in various ways. Three weeks after the final seminar, we arranged for two focus group interviews to take place in each course, with 8 to 10 students participating in each group. We asked open questions on how the students thought they had been affected and more dedicated questions that were generated from a literature study on the effects of flipped classroom courses. These questions dealt with issues about mobility, the potential for repeating lectures, formative feedback, the role of seminars, responsibility, empowerment, lectures before seminars, and any problems encountered. Our results show that, in general, students thought differently about learning after the courses in relation to more traditional approaches, especially regarding the need to be more active. Most students enjoyed the mobility aspect and the accessibility of recorded lectures, although a few claimed it demanded a more disciplined attitude. Most students also expressed a feeling of increased activity and responsibility when participating in seminars. Some even felt empowered because they could influence seminar content. The length of and possibility to navigate in recorded lectures was also considered important. The arrangement of the seminar rooms should promote face-to-face discussions. Finally, the types of questions and tasks were found to affect the outcomes of the seminars. The overall conclusion with regard to students’ learning strategies is that to be an active, responsible, empowered, and critical student you have to be an informed student with possibilities and mandate to influence how, where and when to learn and be able to receive continuous feedback during the learning process. Flipped classroom can support such learning.
Resumo:
In a global economy, manufacturers mainly compete with cost efficiency of production, as the price of raw materials are similar worldwide. Heavy industry has two big issues to deal with. On the one hand there is lots of data which needs to be analyzed in an effective manner, and on the other hand making big improvements via investments in cooperate structure or new machinery is neither economically nor physically viable. Machine learning offers a promising way for manufacturers to address both these problems as they are in an excellent position to employ learning techniques with their massive resource of historical production data. However, choosing modelling a strategy in this setting is far from trivial and this is the objective of this article. The article investigates characteristics of the most popular classifiers used in industry today. Support Vector Machines, Multilayer Perceptron, Decision Trees, Random Forests, and the meta-algorithms Bagging and Boosting are mainly investigated in this work. Lessons from real-world implementations of these learners are also provided together with future directions when different learners are expected to perform well. The importance of feature selection and relevant selection methods in an industrial setting are further investigated. Performance metrics have also been discussed for the sake of completion.
Resumo:
This paper is reviewing objective assessments of Parkinson’s disease(PD) motor symptoms, cardinal, and dyskinesia, using sensor systems. It surveys the manifestation of PD symptoms, sensors that were used for their detection, types of signals (measures) as well as their signal processing (data analysis) methods. A summary of this review’s finding is represented in a table including devices (sensors), measures and methods that were used in each reviewed motor symptom assessment study. In the gathered studies among sensors, accelerometers and touch screen devices are the most widely used to detect PD symptoms and among symptoms, bradykinesia and tremor were found to be mostly evaluated. In general, machine learning methods are potentially promising for this. PD is a complex disease that requires continuous monitoring and multidimensional symptom analysis. Combining existing technologies to develop new sensor platforms may assist in assessing the overall symptom profile more accurately to develop useful tools towards supporting better treatment process.