1 resultado para k-Uniformly Convex Function
em Dalarna University College Electronic Archive
Filtro por publicador
- Aberdeen University (8)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Aston University Research Archive (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (196)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (50)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (29)
- CentAUR: Central Archive University of Reading - UK (78)
- Cochin University of Science & Technology (CUSAT), India (16)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (13)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons at Florida International University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (5)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Viseu (2)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (63)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (39)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (46)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (14)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (9)
- Universidade do Minho (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universita di Parma (1)
- Université de Lausanne, Switzerland (99)
- Université de Montréal, Canada (5)
- University of Michigan (1)
- University of Queensland eSpace - Australia (173)
- University of Washington (2)
Resumo:
The subgradient optimization method is a simple and flexible linear programming iterative algorithm. It is much simpler than Newton's method and can be applied to a wider variety of problems. It also converges when the objective function is non-differentiable. Since an efficient algorithm will not only produce a good solution but also take less computing time, we always prefer a simpler algorithm with high quality. In this study a series of step size parameters in the subgradient equation is studied. The performance is compared for a general piecewise function and a specific p-median problem. We examine how the quality of solution changes by setting five forms of step size parameter.