2 resultados para infeasible paths

em Dalarna University College Electronic Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is done to solve two issues for Sayid Paper Mill Ltd Pakistan. Section one deals with a practical problem arise in SPM that is cutting a given set of raw paper rolls of known length and width, and a set of product paper rolls of known length (equal to the length of raw paper rolls) and width, practical cutting constraints on a single cutting machine, according to demand orders for all customers. To solve this problem requires to determine an optimal cutting schedule to maximize the overall cutting process profitability while satisfying all demands and cutting constraints. The aim of this part of thesis is to develop a mathematical model which solves this problem.Second section deals with a problem of delivering final product from warehouse to different destinations by finding shortest paths. It is an operational routing problem to decide the daily routes for sending trucks to different destination to deliver their final product. This industrial problem is difficult and includes aspect such as delivery to a single destination and multiple destinations with limited resources. The aim of this part of thesis is to develop a process which helps finding shortest path.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit the profit margins of sawmills. To address this challenge, a simulation model has been developed. However, as numerous alternatives are available for arranging bins, simulating all possibilities will take an enormous amount of time and it is computationally infeasible. A discrete-event simulation model incorporating meta-heuristic algorithms has therefore been investigated in this study. Preliminary investigations indicate that the results achieved by GA based simulation model are promising and better than the other meta-heuristic algorithm. Further, a sensitivity analysis has been done on the GA based optimal arrangement which contributes to gaining insights and knowledge about the real system that ultimately leads to improved and enhanced efficiency in sawmill yards. It is expected that the results achieved in the work will support timber industries in making optimal decisions with respect to arrangement of storage bins in a sawmill yard.