2 resultados para inbred populations

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Linkage mapping is used to identify genomic regions affecting the expression of complex traits. However, when experimental crosses such as F2 populations or backcrosses are used to map regions containing a Quantitative Trait Locus (QTL), the size of the regions identified remains quite large, i.e. 10 or more Mb. Thus, other experimental strategies are needed to refine the QTL locations. Advanced Intercross Lines (AIL) are produced by repeated intercrossing of F2 animals and successive generations, which decrease linkage disequilibrium in a controlled manner. Although this approach is seen as promising, both to replicate QTL analyses and fine-map QTL, only a few AIL datasets, all originating from inbred founders, have been reported in the literature. Methods: We have produced a nine-generation AIL pedigree (n = 1529) from two outbred chicken lines divergently selected for body weight at eight weeks of age. All animals were weighed at eight weeks of age and genotyped for SNP located in nine genomic regions where significant or suggestive QTL had previously been detected in the F2 population. In parallel, we have developed a novel strategy to analyse the data that uses both genotype and pedigree information of all AIL individuals to replicate the detection of and fine-map QTL affecting juvenile body weight. Results: Five of the nine QTL detected with the original F2 population were confirmed and fine-mapped with the AIL, while for the remaining four, only suggestive evidence of their existence was obtained. All original QTL were confirmed as a single locus, except for one, which split into two linked QTL. Conclusions: Our results indicate that many of the QTL, which are genome-wide significant or suggestive in the analyses of large intercross populations, are true effects that can be replicated and fine-mapped using AIL. Key factors for success are the use of large populations and powerful statistical tools. Moreover, we believe that the statistical methods we have developed to efficiently study outbred AIL populations will increase the number of organisms for which in-depth complex traits can be analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study covers a period when society changed from a pre-industrial agricultural society to a post-industrial service-producing society. Parallel with this social transformation, major population changes took place. In this study, we analyse how local population changes are affected by neighbouring populations. To do so we use the last 200 years of local population change that redistributed population in Sweden. We use literature to identify several different processes and spatial dependencies in the redistribution between a parish and its surrounding parishes. The analysis is based on a unique unchanged historical parish division, and we use an index of local spatial correlation to describe different kinds of spatial dependencies that have influenced the redistribution of the population. To control inherent time dependencies, we introduce a non-separable spatial temporal correlation model into the analysis of population redistribution. Hereby, several different spatial dependencies can be observed simultaneously over time. The main conclusions are that while local population changes have been highly dependent on the neighbouring populations in the 19th century, this spatial dependence have become insignificant already when two parishes is separated by 5 kilometres in the late 20th century. Another conclusion is that the time dependency in the population change is higher when the population redistribution is weak, as it currently is and as it was during the 19th century until the start of industrial revolution.