6 resultados para implied volatility function models
em Dalarna University College Electronic Archive
Resumo:
Introduction Performance in cross-country skiing is influenced by the skier’s ability to continuously produce propelling forces and force magnitude in relation to the net external forces. A surrogate indicator of the “power supply” in cross-country skiing would be a physiological variable that reflects an important performance-related capability, whereas the body mass itself is an indicator of the “power demand” experienced by the skier. To adequately evaluate an elite skier’s performance capability, it is essential to establish the optimal ratio between the physiological variable and body mass. The overall aim of this doctoral thesis was to investigate the importance of body-mass exponent optimization for the evaluation of performance capability in cross-country skiing. Methods In total, 83 elite cross-country skiers (56 men and 27 women) volunteered to participate in the four studies. The physiological variables of maximal oxygen uptake (V̇O2max) and oxygen uptake corresponding to a blood-lactate concentration of 4 mmol∙l-1 (V̇O2obla) were determined while treadmill roller skiing using the diagonal-stride technique; mean oxygen uptake (V̇O2dp) and upper-body power output (Ẇ) were determined during double-poling tests using a ski-ergometer. Competitive performance data for elite male skiers were collected from two 15-km classical-technique skiing competitions and a 1.25-km sprint prologue; additionally, a 2-km double-poling roller-skiing time trial using the double-poling technique was used as an indicator of upper-body performance capability among elite male and female junior skiers. Power-function modelling was used to explain the race and time-trial speeds based on the physiological variables and body mass. Results The optimal V̇O2max-to-mass ratios to explain 15-km race speed were V̇O2max divided by body mass raised to the 0.48 and 0.53 power, and these models explained 68% and 69% of the variance in mean skiing speed, respectively; moreover, the 95% confidence intervals (CI) for the body-mass exponents did not include either 0 or 1. For the modelling of race speed in the sprint prologue, body mass failed to contribute to the models based on V̇O2max, V̇O2obla, and V̇O2dp. The upper-body power output-to-body mass ratio that optimally explained time-trial speed was Ẇ ∙ m-0.57 and the model explained 63% of the variance in speed. Conclusions The results in this thesis suggest that V̇O2max divided by the square root of body mass should be used as an indicator of performance in 15-km classical-technique races among elite male skiers rather than the absolute or simple ratio-standard scaled expression. To optimally explain an elite male skier’s performance capability in sprint prologues, power-function models based on oxygen-uptake variables expressed absolutely are recommended. Moreover, to evaluate elite junior skiers’ performance capabilities in 2-km double-poling roller-skiing time trials, it is recommended that Ẇ divided by the square root of body mass should be used rather than absolute or simple ratio-standard scaled expression of power output.
Resumo:
The aim of this study was 1) to validate the 0.5 body-mass exponent for maximal oxygen uptake (V. O2max) as the optimal predictor of performance in a 15 km classical-technique skiing competition among elite male cross-country skiers and 2) to evaluate the influence of distance covered on the body-mass exponent for V. O2max among elite male skiers. Twenty-four elite male skiers (age: 21.4±3.3 years [mean ± standard deviation]) completed an incremental treadmill roller-skiing test to determine their V. O2max. Performance data were collected from a 15 km classicaltechnique cross-country skiing competition performed on a 5 km course. Power-function modeling (ie, an allometric scaling approach) was used to establish the optimal body-mass exponent for V . O2max to predict the skiing performance. The optimal power-function models were found to be race speed = 8.83⋅(V . O2max m-0.53) 0.66 and lap speed = 5.89⋅(V . O2max m-(0.49+0.018lap)) 0.43e0.010age, which explained 69% and 81% of the variance in skiing speed, respectively. All the variables contributed to the models. Based on the validation results, it may be recommended that V. O2max divided by the square root of body mass (mL⋅min−1 ⋅kg−0.5) should be used when elite male skiers’ performance capability in 15 km classical-technique races is evaluated. Moreover, the body-mass exponent for V . O2max was demonstrated to be influenced by the distance covered, indicating that heavier skiers have a more pronounced positive pacing profile (ie, race speed gradually decreasing throughout the race) compared to that of lighter skiers.
Resumo:
The purpose of this study was to establish the optimal allometric models to predict International Ski Federation’s ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake (V̇O2max) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine V̇O2max (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects’ FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers’ FISsprint based on V̇O2max, LM, and body mass. The subjects’ test and performance data were as follows: V̇O2max, 4.0±0.3 L min-1; LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: 3.91×105 ∙ VO -6.002maxand 6.95×1010 ∙ LM-5.25; these models explained 66% (P=0.0043) and 52% (P=0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on V̇O2max and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose V̇O2max differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher V̇O2max or LM. It is recommended that coaches use the absolute expression of these variables to monitor skiers’ performance-related training adaptations linked to changes in aerobic power and anaerobic capacity.
Resumo:
Backgound and aims: The main purpose of the PEDAL study is to identify and estimate sample individual pharmacokinetic- pharmacodynamic (PK/PD) models for duodenal infusion of levodopa/carbidopa (Duodopa®) that can be used for in numero simulation of treatment strategies. Other objectives are to study the absorption of Duodopa® and to form a basis for power calculation for a future larger study. PK/PD based on oral levodopa is problematic because of irregular gastric emptying. Preliminary work with data from [Gundert-Remy U et al. Eur J Clin Pharmacol 1983;25:69-72] suggested that levodopa infusion pharmacokinetics can be described by a two-compartment model. Background research led to a hypothesis for an effect model incorporating concentration-unrelated fluctuations, more complex than standard E-max models. Methods: PEDAL involved a few patients already on Duodopa®. A bolus dose (normal morning dose plus 50%) was given after a washout during night. Data collection continued until the clinical effect was back at baseline. The procedure was repeated on two non-consecutive days per patient. The following data were collected in 5 to 15 minutes intervals: i) Accelerometer data. ii) Three e-diary questions about ability to walk, feelings of “off” and “dyskinesia”. iii) Clinical assessment of motor function by a physician. iv) Plasma concentrations of levodopa, carbidopa and the metabolite 3-O-methyldopa. The main effect variable will be the clinical assessment. Results: At date of abstract submission, lab analyses were currently being performed. Modelling results, simulation experiments and conclusions will be presented in our poster.
Resumo:
This paper presents a two-step pseudo likelihood estimation technique for generalized linear mixed models with the random effects being correlated between groups. The core idea is to deal with the intractable integrals in the likelihood function by multivariate Taylor's approximation. The accuracy of the estimation technique is assessed in a Monte-Carlo study. An application of it with a binary response variable is presented using a real data set on credit defaults from two Swedish banks. Thanks to the use of two-step estimation technique, the proposed algorithm outperforms conventional pseudo likelihood algorithms in terms of computational time.
Resumo:
Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic. The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.