2 resultados para group membership models
em Dalarna University College Electronic Archive
Resumo:
Wikipedia is a free, web-based, collaborative, multilingual encyclopedia project supported by the non-profit Wikimedia Foundation. Due to the free nature of Wikipedia and allowing open access to everyone to edit articles the quality of articles may be affected. As all people don’t have equal level of knowledge and also different people have different opinions about a topic so there may be difference between the contributions made by different authors. To overcome this situation it is very important to classify the articles so that the articles of good quality can be separated from the poor quality articles and should be removed from the database. The aim of this study is to classify the articles of Wikipedia into two classes class 0 (poor quality) and class 1(good quality) using the Adaptive Neuro Fuzzy Inference System (ANFIS) and data mining techniques. Two ANFIS are built using the Fuzzy Logic Toolbox [1] available in Matlab. The first ANFIS is based on the rules obtained from J48 classifier in WEKA while the other one was built by using the expert’s knowledge. The data used for this research work contains 226 article’s records taken from the German version of Wikipedia. The dataset consists of 19 inputs and one output. The data was preprocessed to remove any similar attributes. The input variables are related to the editors, contributors, length of articles and the lifecycle of articles. In the end analysis of different methods implemented in this research is made to analyze the performance of each classification method used.
Resumo:
We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical generalized linear model (HGLM), zero-inflated Poisson (ZIP), and hurdle models. The quasi-Poisson HGLM allows for both under- and overdispersion with excessive zeros, while the ZIP and hurdle models allow only for overdispersion. In analyzing the real data set, we see that the quasi-Poisson HGLMs can perform better than the other commonly used models, for example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We develop R codes for fitting these models using a unified algorithm for the HGLMs. Spatial count response with an extremely high proportion of zeros, and underdispersion can be successfully modeled using the quasi-Poisson HGLM with spatial random effects.