5 resultados para elderly men
em Dalarna University College Electronic Archive
Resumo:
BACKGROUND: The role of inflammation and oxidative stress in mild renal impairment in the elderly is not well studied. Accordingly, we aimed at investigating the associations between estimated glomerular filtration rate (eGFR), albumin/creatinine ratio (ACR), and markers of different inflammatory pathways and oxidative stress in a community based cohort of elderly men. FINDINGS: Cystatin C-based GFR, ACR, and biomarkers of cytokine-mediated inflammation (interleukin-6, high-sensitivity C-reactive protein[CRP], serum amyloid A[SAA]), cyclooxygenase-mediated inflammation (urinary prostaglandin F2alpha [PGF2alpha]), and oxidative stress (urinary F2 isoprostanes) were assessed in the Uppsala Longitudinal Study of Adult Men(n = 647, mean age 77 years). RESULTS: In linear regression models adjusting for age, BMI, smoking, blood pressure, LDL-cholesterol, HDL-cholesterol, triglycerides, and treatment with statins, ACE-inhibitors, ASA, and anti-inflammatory agents, eGFR was inversely associated with CRP, interleukin-6, and SAA (beta-coefficient -0.13 to -0.19, p < 0.001 for all), and positively associated with urinary F2-isoprostanes (beta-coefficient 0.09, p = 0.02). In line with this, ACR was positively associated with CRP, interleukin-6, and SAA (beta- coefficient 0.09-0.12, p < 0.02 for all), and negatively associated with urinary F2-isoprostanes (beta-coefficient -0.12, p = 0.002). The associations were similar but with lower regression coefficients in a sub-sample with normal eGFR (>60 ml/min/1.73 m2, n = 514), with the exception that F2-isoprostane and SAA were no longer associated with eGFR. CONCLUSION: Our data indicate that cytokine-mediated inflammation is involved in the early stages of impaired kidney function in the elderly, but that cyclooxygenase-mediated inflammation does not play a role at this stage. The unexpected association between higher eGFR/lower albuminuria and increased F2-isoprostanes in urine merits further studies.
Resumo:
Background and objectives The matricellular protein osteopontin is involved in the pathogenesis of both kidney and cardiovascular disease. However, whether circulating and urinary osteopontin levels are associated with the risk of these diseases is less studied. Design, setting, participants and measurements A community-based cohort of elderly (Uppsala Longitudinal Study of Adult Men [ULSAM; n=741; mean age: 77 years]) was used to study the associations between plasma and urinary osteopontin, incident chronic kidney disease, and the risk of cardiovascular death during a median of 8 years of follow-up. Results There was no significant cross-sectional correlation between plasma and urinary osteopontin (Spearman rho=0.07, p=0.13). Higher urinary, but not plasma osteopontin, was associated with incident chronic kidney disease in multivariable models adjusted for age, cardiovascular risk factors, baseline glomerular filtration rate (GFR), urinary albumin/creatinine ratio, and inflammatory markers interleukin 6 and high sensitivity C-reactive protein (Odds ratio for 1-standard deviation (SD) of urinary osteopontin, 1.42, 95% CI (1.00-2.02), p=0.048). Conversely, plasma osteopontin, but not urinary osteopontin, was independently associated with cardiovascular death (multivariable hazard ratio per SD increase, 1.35, 95% CI (1.14-1.58), p<0.001, and 1.00, 95% CI (0.79-1.26), p=0.99, respectively). The addition of plasma osteopontin to a model with established cardiovascular risk factors significantly increased the C-statistics for the prediction of cardiovascular death (p<0.002). Conclusions Higher urinary osteopontin specifically predicts incident chronic kidney disease while plasma osteopontin specifically predicts cardiovascular death. Our data put forward osteopontin as an important factor in the detrimental interplay between the kidney and the cardiovascular system. The clinical implications, and why plasma and urinary osteopontin mirror different pathologies, remains to be established.
Resumo:
OBJECTIVE: Higher levels of the novel inflammatory marker pentraxin 3 (PTX3) predict cardiovascular mortality in patients with chronic kidney disease (CKD). Yet, whether PTX3 predicts worsening of kidney function has been less well studied. We therefore investigated the associations between PTX3 levels, kidney disease measures and CKD incidence. METHODS: Cross-sectional associations between serum PTX3 levels, urinary albumin/creatinine ratio (ACR) and cystatin C-estimated glomerular filtration rate (GFR) were assessed in two independent community-based cohorts of elderly subjects: the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS, n = 768, 51% women, mean age 75 years) and the Uppsala Longitudinal Study of Adult Men (ULSAM, n = 651, mean age 77 years). The longitudinal association between PTX3 level at baseline and incident CKD (GFR <60 mL( ) min(-1) 1.73 m(-) ²) was also analysed (number of events/number at risk: PIVUS 229/746, ULSAM 206/315). RESULTS: PTX3 levels were inversely associated with GFR [PIVUS: B-coefficient per 1 SD increase -0.16, 95% confidence interval (CI) -0.23 to -0.10, P < 0.001; ULSAM: B-coefficient per 1 SD increase -0.09, 95% CI -0.16 to -0.01, P < 0.05], but not ACR, after adjusting for age, gender, C-reactive protein and prevalent cardiovascular disease in cross-sectional analyses. In longitudinal analyses, PTX3 levels predicted incident CKD after 5 years in both cohorts [PIVUS: multivariable odds ratio (OR) 1.21, 95% CI 1.01-1.45, P < 0.05; ULSAM: multivariable OR 1.37, 95% CI 1.07-1.77, P < 0.05]. CONCLUSIONS: Higher PTX3 levels are associated with lower GFR and independently predict incident CKD in elderly men and women. Our data confirm and extend previous evidence suggesting that inflammatory processes are activated in the early stages of CKD and drive impairment of kidney function. Circulating PTX3 appears to be a promising biomarker of kidney disease.
Resumo:
Objective: Turnover of the extracellular matrix in all solid organs is governed mainly by a balance between the degrading matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). An altered extracellular matrix metabolism has been implicated in a variety of diseases. We investigated relations of serum levels of MMP-9 and TIMP-1 to mortality risk from an etiological perspective. Design: The prospective Uppsala Longitudinal Study of Adult Men (ULSAM) cohort, followed from 1991–1995 for up to 18.1 years. A random population-based sample of 1,082 71-year-old men, no loss to follow-up. Endpoints were all-cause (n = 628), cardiovascular (n = 230), non-cardiovascular (n = 398) and cancer mortality (n = 178), and fatal or non-fatal myocardial infarction (n = 138) or stroke (n = 163). Results: Serum MMP-9 and TIMP-1 levels were associated with risk of all-cause mortality (Cox proportional hazard ratio [HR] per standard deviation 1.10, 95% confidence interval [CI] 1.03–1.19; and 1.11, 1.02–1.20; respectively). TIMP-1 levels were mainly related to risks of cardiovascular mortality and stroke (HR per standard deviation 1.22, 95% CI 1.09–1.37; and 1.18, 1.04–1.35; respectively). All relations except those of TIMP-1 to stroke risk were attenuated by adjustment for cardiovascular disease risk factors. Relations in a subsample without cardiovascular disease or cancer were similar to those in the total sample. Conclusion: In this community-based cohort of elderly men, serum MMP-9 and TIMP-1 levels were related to mortality risk. An altered extracellular matrix metabolism may be involved in several detrimental pathways, and circulating MMP-9 or TIMP-1 levels may be relevant markers thereof.
Resumo:
Insulin resistance (IR) and impaired insulin secretion contribute to type 2 diabetes and cardiovascular disease. Both are associated with changes in the circulating metabolome, but causal directions have been difficult to disentangle. We combined untargeted plasma metabolomics by liquid chromatography/mass spectrometry in three non-diabetic cohorts with Mendelian Randomization (MR) analysis to obtain new insights into early metabolic alterations in IR and impaired insulin secretion. In up to 910 elderly men we found associations of 52 metabolites with hyperinsulinemic-euglycemic clamp-measured IR and/or β-cell responsiveness (disposition index) during an oral glucose tolerance test. These implicated bile acid, glycerophospholipid and caffeine metabolism for IR and fatty acid biosynthesis for impaired insulin secretion. In MR analysis in two separate cohorts (n = 2,613) followed by replication in three independent studies profiled on different metabolomics platforms (n = 7,824 / 8,961 / 8,330), we discovered and replicated causal effects of IR on lower levels of palmitoleic acid and oleic acid. A trend for a causal effect of IR on higher levels of tyrosine reached significance only in meta-analysis. In one of the largest studies combining "gold standard" measures for insulin responsiveness with non-targeted metabolomics, we found distinct metabolic profiles related to IR or impaired insulin secretion. We speculate that the causal effects on monounsaturated fatty acid levels could explain parts of the raised cardiovascular disease risk in IR that is independent of diabetes development.