5 resultados para dynamic execution
em Dalarna University College Electronic Archive
Resumo:
Genetic algorithms are commonly used to solve combinatorial optimizationproblems. The implementation evolves using genetic operators (crossover, mutation,selection, etc.). Anyway, genetic algorithms like some other methods have parameters(population size, probabilities of crossover and mutation) which need to be tune orchosen.In this paper, our project is based on an existing hybrid genetic algorithmworking on the multiprocessor scheduling problem. We propose a hybrid Fuzzy-Genetic Algorithm (FLGA) approach to solve the multiprocessor scheduling problem.The algorithm consists in adding a fuzzy logic controller to control and tunedynamically different parameters (probabilities of crossover and mutation), in anattempt to improve the algorithm performance. For this purpose, we will design afuzzy logic controller based on fuzzy rules to control the probabilities of crossoverand mutation. Compared with the Standard Genetic Algorithm (SGA), the resultsclearly demonstrate that the FLGA method performs significantly better.
Resumo:
“Biosim” is a simulation software which works to simulate the harvesting system.This system is able to design a model for any logistic problem with the combination of several objects so that the artificial system can show the performance of an individual model. The system will also describe the efficiency, possibility to be chosen for real life application of that particular model. So, when any one wish to setup a logistic model like- harvesting system, in real life he/she may be noticed about the suitable prostitution for his plants and factories as well as he/she may get information about the least number of objects, total time to complete the task, total investment required for his model, total amount of noise produced for his establishment in advance. It will produce an advance over view for his model. But “Biosim” is quite slow .As it is an object based system, it takes long time to make its decision. Here the main task is to modify the system so that it can work faster than the previous. So, the main objective of this thesis is to reduce the load of “Biosim” by making some modification of the original system as well as to increase its efficiency. So that the whole system will be faster than the previous one and performs more efficiently when it will be applied in real life. Theconcept is to separate the execution part of ”Biosim” form its graphical engine and run this separated portion in a third generation language platform. C++ is chosenhere as this external platform. After completing the proposed system, results with different models have been observed. The results show that, for any type of plants of fields, for any number of trucks, the proposed system is faster than the original system. The proposed system takes at least 15% less time “Biosim”. The efficiency increase with the complexity of than the original the model. More complex the model, more efficient the proposed system is than original “Biosim”.Depending on the complexity of a model, the proposed system can be 56.53 % faster than the original “Biosim”.
Resumo:
This paper is concerned with the modern theory of social cost-benefit analysis in a dynamic economy. The theory emphasizes the role of a comprehensive, forward-looking, dynamic welfare index within the period of the project rather than that of a project's long-term consequences. However, what constitutes such a welfare index remains controversial in the recent literature. In this paper, we attempt to shed light on the issue by deriving three equivalent cost-benefit rules for evaluating a small project. In particular, we show that the direct change in net national product (NNP) qualifies as a convenient welfare index without involving any other induced side effects. The project evaluation criterion thus becomes the present discounted value of the direct changes in NNP over the project period. We also illustrate the application of this theory in a few stylized examples.
Resumo:
Objective: For the evaluation of the energetic performance of combined renewable heating systems that supply space heat and domestic hot water for single family houses, dynamic behaviour, component interactions, and control of the system play a crucial role and should be included in test methods. Methods: New dynamic whole system test methods were developed based on “hardware in the loop” concepts. Three similar approaches are described and their differences are discussed. The methods were applied for testing solar thermal systems in combination with fossil fuel boilers (heating oil and natural gas), biomass boilers, and/or heat pumps. Results: All three methods were able to show the performance of combined heating systems under transient operating conditions. The methods often detected unexpected behaviour of the tested system that cannot be detected based on steady state performance tests that are usually applied to single components. Conclusion: Further work will be needed to harmonize the different test methods in order to reach comparable results between the different laboratories. Practice implications: A harmonized approach for whole system tests may lead to new test standards and improve the accuracy of performance prediction as well as reduce the need for field tests.