2 resultados para drops and bubbles
em Dalarna University College Electronic Archive
Resumo:
The study reported here is part of a large project for evaluation of the Thermo-Chemical Accumulator (TCA), a technology under development by the Swedish company ClimateWell AB. The studies concentrate on the use of the technology for comfort cooling. This report concentrates on measurements in the laboratory, modelling and system simulation. The TCA is a three-phase absorption heat pump that stores energy in the form of crystallised salt, in this case Lithium Chloride (LiCl) with water being the other substance. The process requires vacuum conditions as with standard absorption chillers using LiBr/water. Measurements were carried out in the laboratories at the Solar Energy Research Center SERC, at Högskolan Dalarna as well as at ClimateWell AB. The measurements at SERC were performed on a prototype version 7:1 and showed that this prototype had several problems resulting in poor and unreliable performance. The main results were that: there was significant corrosion leading to non-condensable gases that in turn caused very poor performance; unwanted crystallisation caused blockages as well as inconsistent behaviour; poor wetting of the heat exchangers resulted in relatively high temperature drops there. A measured thermal COP for cooling of 0.46 was found, which is significantly lower than the theoretical value. These findings resulted in a thorough redesign for the new prototype, called ClimateWell 10 (CW10), which was tested briefly by the authors at ClimateWell. The data collected here was not large, but enough to show that the machine worked consistently with no noticeable vacuum problems. It was also sufficient for identifying the main parameters in a simulation model developed for the TRNSYS simulation environment, but not enough to verify the model properly. This model was shown to be able to simulate the dynamic as well as static performance of the CW10, and was then used in a series of system simulations. A single system model was developed as the basis of the system simulations, consisting of a CW10 machine, 30 m2 flat plate solar collectors with backup boiler and an office with a design cooling load in Stockholm of 50 W/m2, resulting in a 7.5 kW design load for the 150 m2 floor area. Two base cases were defined based on this: one for Stockholm using a dry cooler with design cooling rate of 30 kW; one for Madrid with a cooling tower with design cooling rate of 34 kW. A number of parametric studies were performed based on these two base cases. These showed that the temperature lift is a limiting factor for cooling for higher ambient temperatures and for charging with fixed temperature source such as district heating. The simulated evacuated tube collector performs only marginally better than a good flat plate collector if considering the gross area, the margin being greater for larger solar fractions. For 30 m2 collector a solar faction of 49% and 67% were achieved for the Stockholm and Madrid base cases respectively. The average annual efficiency of the collector in Stockholm (12%) was much lower than that in Madrid (19%). The thermal COP was simulated to be approximately 0.70, but has not been possible to verify with measured data. The annual electrical COP was shown to be very dependent on the cooling load as a large proportion of electrical use is for components that are permanently on. For the cooling loads studied, the annual electrical COP ranged from 2.2 for a 2000 kWh cooling load to 18.0 for a 21000 kWh cooling load. There is however a potential to reduce the electricity consumption in the machine, which would improve these figures significantly. It was shown that a cooling tower is necessary for the Madrid climate, whereas a dry cooler is sufficient for Stockholm although a cooling tower does improve performance. The simulation study was very shallow and has shown a number of areas that are important to study in more depth. One such area is advanced control strategy, which is necessary to mitigate the weakness of the technology (low temperature lift for cooling) and to optimally use its strength (storage).
Resumo:
Though sound symbolic words (onomatopoeia and mimetic words, or giongo and gitaigo in Japanese) exist in other languages, it would not be so easy to compare them to those in Japanese. This is because unlike in Japanese, in many other languages (here we see English and Spanish) sound symbolic words do not have distinctive forms that separate them immediately from the rest of categories of words. In Japanese, a sound symbolic word has a radical (that is based on the elaborated Japanese sound symbolic system), and often a suffix that shows subtle nuance. Together they give the word a distinctive form that differentiates it from other categories of words, though its grammatical functions could vary, especially in the case of mimetic words (gitaigo). Without such an obvious feature, in other languages, it would not be always easy to separate sound symbolic words from the rest. These expressions are extremely common and used in almost all types of text in Japanese, but their elaborated sound symbolic system and possibly their various grammatical functions are making giongo and gitaigo one of the most difficult challenges for the foreign students and translators. Studying the translation of these expressions into other languages might give some indication related to the comparison of Japanese sound symbolic words and those in other languages. Though sound symbolic words are present in many types of texts in Japanese, their functions in traditional forms of text (letters only) and manga (Japanese comics)are different and they should be treated separately. For example, in traditional types of text such as novels, the vast majority of the sound symbolic words used are mimetic words (gitaigo) and most of them are used as adverbs, whereas in manga, the majority of the sound symbolic words used (excluding those appear within the speech bubbles) are onomatopoeias (giongo) and often used on their own (i.e. not as a part of a sentence). Naturally, the techniques used to translate these expressions in the above two types of documents differ greatly. The presentation will focus on i) grammatical functions of Japanese sound symbolic words in traditional types of texts (novels/poems) and in manga works, and ii) whether their features and functions are maintained (i.e. whether they are translated as sound symbolic words) when translated into other languages (English and Spanish). The latter point should be related to a comparison of sound symbolic words in Japanese and other languages, which will be also discussed.