3 resultados para double sample selection
em Dalarna University College Electronic Archive
Resumo:
BACKGROUND: Many publications report the prevalence of chronic kidney disease (CKD) in the general population. Comparisons across studies are hampered as CKD prevalence estimations are influenced by study population characteristics and laboratory methods. METHODS: For this systematic review, two researchers independently searched PubMed, MEDLINE and EMBASE to identify all original research articles that were published between 1 January 2003 and 1 November 2014 reporting the prevalence of CKD in the European adult general population. Data on study methodology and reporting of CKD prevalence results were independently extracted by two researchers. RESULTS: We identified 82 eligible publications and included 48 publications of individual studies for the data extraction. There was considerable variation in population sample selection. The majority of studies did not report the sampling frame used, and the response ranged from 10 to 87%. With regard to the assessment of kidney function, 67% used a Jaffe assay, whereas 13% used the enzymatic assay for creatinine determination. Isotope dilution mass spectrometry calibration was used in 29%. The CKD-EPI (52%) and MDRD (75%) equations were most often used to estimate glomerular filtration rate (GFR). CKD was defined as estimated GFR (eGFR) <60 mL/min/1.73 m(2) in 92% of studies. Urinary markers of CKD were assessed in 60% of the studies. CKD prevalence was reported by sex and age strata in 54 and 50% of the studies, respectively. In publications with a primary objective of reporting CKD prevalence, 39% reported a 95% confidence interval. CONCLUSIONS: The findings from this systematic review showed considerable variation in methods for sampling the general population and assessment of kidney function across studies reporting CKD prevalence. These results are utilized to provide recommendations to help optimize both the design and the reporting of future CKD prevalence studies, which will enhance comparability of study results.
Resumo:
Background: Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods: We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results: Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion: The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.
Resumo:
Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.