13 resultados para district cooling

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PolySMART demonstration system SP1b has been modeled in TRNSYS and calibrated against monitored data. The system is an example of distributed cooling with centralized CHP, where the driving heat is delivered via the district heating network. The system pre-cools the cooling water for the head office of Borlänge municipality, for which the main cooling is supplied by a 200 kW compression chiller. The SP1b system thus provides pre-cooling. It consists of ClimateWell TDC with nominal capacity of 10 kW together with a dry cooler for recooling and heat exchangers in the cooling and driving circuits. The cooling system is only operated from 06:00 to 17:00 during working days, and the cooling season is generally from mid May to mid September. The nominal operating conditions of the main chiller are 12/15°C. The main aims of this simulation study were to: reduce the electricity consumption, and if possible to improve the thermal COP and capacity at the same time; and to study how the system would perform with different boundary conditions such as climate and load. The calibration of the system model was made in three stages: estimation of parameters based on manufacturer data and dimensions of the system; calibration of each circuit (pipes and heat exchangers) separately using steady state point; and finally calibration of the complete model in terms of thermal and electrical energy as well as running times, for a five day time series of data with one minute average data values. All the performance figures were with 3% of the measured values apart from the running time for the driving circuit that was 4% different. However, the performance figures for this base case system for the complete cooling season of mid-May to midSeptember were significantly better than those for the monitoring data. This was attributed to long periods when the monitored system was not in operation and due to a control parameter that hindered cold delivery at certain times. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of measurements on the performance of solar cell string modules with low-concentrating CPC reflectors with a concentration factor C ˜ 4X have been carried out. To minimise the reduction in efficiency due to high cell temperatures, the modules were cooled. Four different way of cooling were tested:1) The thermal mass of the module was increased, 2) passive air cooling was used by introducing a small air gap between the module and the reflector, 3) the PV cells were cooled by a large cooling fin, 4) the module was actively cooled by circulating cold water on the back. The best performance was given with the actively cooled PV module which gave 2,2 times the output from a reference module while for the output from the module with a cooling fin the value was 1,8.Active cooling is also interesting due to the possibility of co-generation of thermal and electrical energy which is discussed in the paper. Simulations, based on climate data from Stockholm, latitude 59.4°N, show that there are good prospects for producing useful temperatures of the cooling fluid with only a slightly reduced performance of the electrical fraction of the PV thermal hybrid system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study reported here is part of a large project for evaluation of the Thermo-Chemical Accumulator (TCA), a technology under development by the Swedish company ClimateWell AB. The studies concentrate on the use of the technology for comfort cooling. This report concentrates on measurements in the laboratory, modelling and system simulation. The TCA is a three-phase absorption heat pump that stores energy in the form of crystallised salt, in this case Lithium Chloride (LiCl) with water being the other substance. The process requires vacuum conditions as with standard absorption chillers using LiBr/water. Measurements were carried out in the laboratories at the Solar Energy Research Center SERC, at Högskolan Dalarna as well as at ClimateWell AB. The measurements at SERC were performed on a prototype version 7:1 and showed that this prototype had several problems resulting in poor and unreliable performance. The main results were that: there was significant corrosion leading to non-condensable gases that in turn caused very poor performance; unwanted crystallisation caused blockages as well as inconsistent behaviour; poor wetting of the heat exchangers resulted in relatively high temperature drops there. A measured thermal COP for cooling of 0.46 was found, which is significantly lower than the theoretical value. These findings resulted in a thorough redesign for the new prototype, called ClimateWell 10 (CW10), which was tested briefly by the authors at ClimateWell. The data collected here was not large, but enough to show that the machine worked consistently with no noticeable vacuum problems. It was also sufficient for identifying the main parameters in a simulation model developed for the TRNSYS simulation environment, but not enough to verify the model properly. This model was shown to be able to simulate the dynamic as well as static performance of the CW10, and was then used in a series of system simulations. A single system model was developed as the basis of the system simulations, consisting of a CW10 machine, 30 m2 flat plate solar collectors with backup boiler and an office with a design cooling load in Stockholm of 50 W/m2, resulting in a 7.5 kW design load for the 150 m2 floor area. Two base cases were defined based on this: one for Stockholm using a dry cooler with design cooling rate of 30 kW; one for Madrid with a cooling tower with design cooling rate of 34 kW. A number of parametric studies were performed based on these two base cases. These showed that the temperature lift is a limiting factor for cooling for higher ambient temperatures and for charging with fixed temperature source such as district heating. The simulated evacuated tube collector performs only marginally better than a good flat plate collector if considering the gross area, the margin being greater for larger solar fractions. For 30 m2 collector a solar faction of 49% and 67% were achieved for the Stockholm and Madrid base cases respectively. The average annual efficiency of the collector in Stockholm (12%) was much lower than that in Madrid (19%). The thermal COP was simulated to be approximately 0.70, but has not been possible to verify with measured data. The annual electrical COP was shown to be very dependent on the cooling load as a large proportion of electrical use is for components that are permanently on. For the cooling loads studied, the annual electrical COP ranged from 2.2 for a 2000 kWh cooling load to 18.0 for a 21000 kWh cooling load. There is however a potential to reduce the electricity consumption in the machine, which would improve these figures significantly. It was shown that a cooling tower is necessary for the Madrid climate, whereas a dry cooler is sufficient for Stockholm although a cooling tower does improve performance. The simulation study was very shallow and has shown a number of areas that are important to study in more depth. One such area is advanced control strategy, which is necessary to mitigate the weakness of the technology (low temperature lift for cooling) and to optimally use its strength (storage).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Minor Field Study was carried out during November and December in 2011 in the Mount Elgon District in Western Kenya. The objective was to examine nine small-scale farming household´s land use and socioeconomic situation when they have joined a non-governmental organization (NGO) project, which specifically targets small-scale farming households to improve land use system and socioeconomic situation by the extension of soil and water conservation measures. The survey has worked along three integral examinations methods which are mapping and processing data using GIS, semi structured interviews and literature studies.   This study has adopted a theoretical approach referred to as political ecology, in which landesque capital is a central concept. The result shows that all farmers, except one, have issues with land degradation. However, the extent of the problem and also implemented sustainable soil and water conservation measures were diverse among the farmers. The main causes of this can both be linked to how the farmers themselves utilized their farmland and how impacts from the climate change have modified the terms of the farmers working conditions. These factors have consequently resulted in impacts on the informants’ socioeconomic conditions. Furthermore it was also registered that social and economic elements, in some cases, were the causes of how the farmers manage their farmland. The farmer who had no significant problem with soil erosion had invested in trees and opportunities to irrigate the farmland. In addition, it was also recorded that certain farmers had invested in particular soil and water conservation measures without any significant result. This was probably due to the time span these land measures cover before they start to generate revenue.  The outcome of this study has traced how global, national and local elements exist in a context when it comes to the conditions of the farmers´ land use and their socioeconomic situation. The farmers atMt.Elgon are thereby a component of a wider context when they are both contributory to their socioeconomic situation, mainly due to their land management, and also exposed to core-periphery relationships on which the farmers themselves have no influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a first step in assessing the potential of thermal energy storage in Swedish buildings, the current situation of the Swedish building stock and different storage methods are discussed in this paper. Overall, many buildings are from the 1960’s or earlier having a relatively high energy demand, creating opportunities for large energy savings. The major means of heating are electricity for detached houses and district heating for multi dwelling houses and premises. Cooling needs are relatively low but steadily increasing, emphasizing the need to consider energy storage for both heat and cold. The thermal mass of a building is important for passive storage of thermal energy but this has not been considered much when constructing buildings in Sweden. Instead, common ways of storing thermal energy in Swedish buildings today is in water storage tanks or in the ground using boreholes, while latent thermal energy storage is still very uncommon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for cooling and air-conditioning of building is increasingly ever growing. This increase is mostly due to population and economic growth in developing countries, and also desire for a higher quality of thermal comfort. Increase in the use of conventional cooling systems results in larger carbon footprint and more greenhouse gases considering their higher electricity consumption, and it occasionally creates peaks in electricity demand from power supply grid. Solar energy as a renewable energy source is an alternative to drive the cooling machines since the cooling load is generally high when solar radiation is high. This thesis examines the performance of PV/T solar collector manufactured by Solarus company in a solar cooling system for an office building in Dubai, New Delhi, Los Angeles and Cape Town. The study is carried out by analyzing climate data and the requirements for thermal comfort in office buildings. Cooling systems strongly depend on weather conditions and local climate. Cooling load of buildings depend on many parameters such as ambient temperature, indoor comfort temperature, solar gain to the building and internal gains including; number of occupant and electrical devices. The simulations were carried out by selecting a suitable thermally driven chiller and modeling it with PV/T solar collector in Polysun software. Fractional primary energy saving and solar fraction were introduced as key figures of the project to evaluate the performance of cooling system. Several parametric studies and simulations were determined according to PV/T aperture area and hot water storage tank volume. The fractional primary energy saving analysis revealed that thermally driven chillers, particularly adsorption chillers are not suitable to be utilizing in small size of solar cooling systems in hot and tropic climates such as Dubai and New Delhi. Adsorption chillers require more thermal energy to meet the cooling load in hot and dry climates. The adsorption chillers operate in their full capacity and in higher coefficient of performance when they run in a moderate climate since they can properly reject the exhaust heat. The simulation results also indicated that PV/T solar collector have higher efficiency in warmer climates, however it requires a larger size of PV/T collectors to supply the thermally driven chillers for providing cooling in hot climates. Therefore using an electrical chiller as backup gives much better results in terms of primary energy savings, since PV/T electrical production also can be used for backup electrical chiller in a net metering mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Producing cost-competitive small and medium-sized solar cooling systems is currently a significant challenge. Due to system complexity, extensive engineering, design and equipment costs; the installation costs of solar thermal cooling systems are prohibitively high. In efforts to overcome these limitations, a novel sorption heat pump module has been developed and directly integrated into a solar thermal collector. The module comprises a fully encapsulated sorption tube containing hygroscopic salt sorbent and water as a refrigerant, sealed under vacuum with no moving parts. A 5.6m2 aperture area outdoor laboratory-scale system of sorption module integrated solar collectors was installed in Stockholm, Sweden and evaluated under constant re-cooling and chilled fluid return temperatures in order to assess collector performance. Measured average solar cooling COP was 0.19 with average cooling powers between 120 and 200 Wm-2 collector aperture area. It was observed that average collector cooling power is constant at daily insolation levels above 3.6 kWhm-2 with the cooling energy produced being proportional to solar insolation. For full evaluation of an integrated sorption collector solar heating and cooling system, under the umbrella of a European Union project for technological innovation, a 180 m2 large-scale demonstration system has been installed in Karlstad, Sweden. Results from the installation commissioned in summer 2014 with non-optimised control strategies showed average electrical COP of 10.6 and average cooling powers between 140 and 250 Wm-2 collector aperture area. Optimisation of control strategies, heat transfer fluid flows through the collectors and electrical COP will be carried out in autumn 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Misoprostol is established for the treatment of incomplete abortion but has not been systematically assessed when provided by midwives at district level in a low-resource setting. We investigated the effectiveness and safety of midwives diagnosing and treating incomplete abortion with misoprostol, compared with physicians. METHODS: We did a multicentre randomised controlled equivalence trial at district level at six facilities in Uganda. Eligibility criteria were women with signs of incomplete abortion. We randomly allocated women with first-trimester incomplete abortion to clinical assessment and treatment with misoprostol either by a physician or a midwife. The randomisation (1:1) was done in blocks of 12 and was stratified for study site. Primary outcome was complete abortion not needing surgical intervention within 14-28 days after initial treatment. The study was not masked. Analysis of the primary outcome was done on the per-protocol population with a generalised linear-mixed effects model. The predefined equivalence range was -4% to 4%. The trial was registered at ClinicalTrials.gov, number NCT01844024. FINDINGS: From April 30, 2013, to July 21, 2014, 1108 women were assessed for eligibility. 1010 women were randomly assigned to each group (506 to midwife group and 504 to physician group). 955 women (472 in the midwife group and 483 in the physician group) were included in the per-protocol analysis. 452 (95·8%) of women in the midwife group had complete abortion and 467 (96·7%) in the physician group. The model-based risk difference for midwife versus physician group was -0·8% (95% CI -2·9 to 1·4), falling within the predefined equivalence range (-4% to 4%). The overall proportion of women with incomplete abortion was 3·8% (36/955), similarly distributed between the two groups (4·2% [20/472] in the midwife group, 3·3% [16/483] in the physician group). No serious adverse events were recorded. INTERPRETATION: Diagnosis and treatment of incomplete abortion with misoprostol by midwives is equally safe and effective as when provided by physicians, in a low-resource setting. Scaling up midwives' involvement in treatment of incomplete abortion with misoprostol at district level would increase access to safe post-abortion care. FUNDING: The Swedish Research Council, Karolinska Institutet, and Dalarna University.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploiting solar energy technology for both heating and cooling purposes has the potential of meeting an appreciable portion of the energy demand in buildings throughout the year. By developing an integrated, multi-purpose solar energy system, that can operate all twelve months of the year, a high utilisation factor can be achieved which translates to more economical systems. However, there are still some techno-economic barriers to the general commercialisation and market penetration of such technologies. These are associated with high system and installation costs, significant system complexity, and lack of knowledge of system implementation and expected performance. A sorption heat pump module that can be integrated directly into a solar thermal collector has thus been developed in order to tackle the aforementioned market barriers. This has been designed for the development of cost-effective pre-engineered solar energy system kits that can provide both heating and cooling. This thesis summarises the characterisation studies of the operation of individual sorption modules, sorption module integrated solar collectors and a full solar heating and cooling system employing sorption module integrated collectors. Key performance indicators for the individual sorption modules showed cooling delivery for 6 hours at an average power of 40 W and a temperature lift of 21°C. Upon integration of the sorption modules into a solar collector, measured solar radiation energy to cooling energy conversion efficiencies (solar cooling COP) were between 0.10 and 0.25 with average cooling powers between 90 and 200 W/m2 collector aperture area. Further investigations of the sorption module integrated collectors implementation in a full solar heating and cooling system yielded electrical cooling COP ranging from 1.7 to 12.6 with an average of 10.6 for the test period. Additionally, simulations were performed to determine system energy and cost saving potential for various system sizes over a full year of operation for a 140 m2 single-family dwelling located in Madrid, Spain. Simulations yielded an annual solar fraction of 42% and potential cost savings of €386 per annum for a solar heating and cooling installation employing 20m2 of sorption integrated collectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This study aimed to assess women´s acceptability of diagnosis and treatment of incomplete abortion with misoprostol by midwives, compared with physicians. METHODS: This was an analysis of secondary outcomes from a multi-centre randomized controlled equivalence trial at district level in Uganda. Women with first trimester incomplete abortion were randomly allocated to clinical assessment and treatment with misoprostol by a physician or a midwife. The randomisation (1:1) was done in blocks of 12 and stratified for health care facility. Acceptability was measured in expectations and satisfaction at a follow up visit 14-28 days following treatment. Analysis of women's overall acceptability was done using a generalized linear mixed-effects model with an equivalence range of -4% to 4%. The study was not masked. The trial is registered at ClinicalTrials.org, NCT 01844024. RESULTS: From April 2013 to June 2014, 1108 women were assessed for eligibility of which 1010 were randomized (506 to midwife and 504 to physician). 953 women were successfully followed up and included in the acceptability analysis. 95% (904) of the participants found the treatment satisfactory and overall acceptability was found to be equivalent between the two study groups. Treatment failure, not feeling calm and safe following treatment, experiencing severe abdominal pain or heavy bleeding following treatment, were significantly associated with non-satisfaction. No serious adverse events were recorded. CONCLUSIONS: Treatment of incomplete abortion with misoprostol by midwives and physician was highly, and equally, acceptable to women. TRIAL REGISTRATION: ClinicalTrials.gov NCT01844024.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Abortion is restricted in Uganda, and poor access to contraceptive methods result in unwanted pregnancies. This leaves women no other choice than unsafe abortion, thus placing a great burden on the Ugandan health system and making unsafe abortion one of the major contributors to maternal mortality and morbidity in Uganda. The existing sexual and reproductive health policy in Uganda supports the sharing of tasks in post-abortion care. This task sharing is taking place as a pragmatic response to the increased workload. This study aims to explore physicians' and midwives' perception of post-abortion care with regard to professional competences, methods, contraceptive counselling and task shifting/sharing in post-abortion care. Methods: In-depth interviews (n = 27) with health care providers of post-abortion care were conducted in seven health facilities in the Central Region of Uganda. The data were organized using thematic analysis with an inductive approach. Results: Post-abortion care was perceived as necessary, albeit controversial and sometimes difficult to provide. Together with poor conditions post-abortion care provoked frustration especially among midwives. Task sharing was generally taking place and midwives were identified as the main providers, although they would rarely have the proper training in post-abortion care. Additionally, midwives were sometimes forced to provide services outside their defined task area, due to the absence of doctors. Different uterine evacuation skills were recognized although few providers knew of misoprostol as a method for post-abortion care. An overall need for further training in post-abortion care was identified. Conclusions: Task sharing is taking place, but providers lack the relevant skills for the provision of quality care. For post-abortion care to improve, task sharing needs to be scaled up and in-service training for both doctors and midwives needs to be provided. Post-abortion care should further be included in the educational curricula of nurses and midwives. Scaled-up task sharing in post-abortion care, along with misoprostol use for uterine evacuation would provide a systematic approach to improving the quality of care and accessibility of services, with the aim of reducing abortion-related mortality and morbidity in Uganda.