5 resultados para decision analysis
em Dalarna University College Electronic Archive
Resumo:
The purpose of this work is to develop a web based decision support system, based onfuzzy logic, to assess the motor state of Parkinson patients on their performance in onscreenmotor tests in a test battery on a hand computer. A set of well defined rules, basedon an expert’s knowledge, were made to diagnose the current state of the patient. At theend of a period, an overall score is calculated which represents the overall state of thepatient during the period. Acceptability of the rules is based on the absolute differencebetween patient’s own assessment of his condition and the diagnosed state. Anyinconsistency can be tracked by highlighted as an alert in the system. Graphicalpresentation of data aims at enhanced analysis of patient’s state and performancemonitoring by the clinic staff. In general, the system is beneficial for the clinic staff,patients, project managers and researchers.
Resumo:
This paper investigates what factors affect the destination choice for Jordanian to 8 countries (Oman, Saudi Arabia, Syria, Tunisia, Yemen, Egypt, Lebanon and Bahrain) using panel data analysis. Number of outbound tourists is represented as dependent variable, which is regressed over five explanatory variables using fixed effect model. The finding of this paper is that tourists from Jordan have weak demand for outbound tourism; Jordanian decision of traveling abroad is determined by the cost of traveling to different places and choosing the cheapest alternative.
Resumo:
The aim of this work was to design a set of rules for levodopa infusion dose adjustment in Parkinson’s disease based on a simulation experiments. Using this simulator, optimal infusions dose in different conditions were calculated. There are seven conditions (-3 to +3)appearing in a rating scale for Parkinson’s disease patients. By finding mean of the differences between conditions and optimal dose, two sets of rules were designed. The set of rules was optimized by several testing. Usefulness for optimizing the titration procedure of new infusion patients based on rule-based reasoning was investigated. Results show that both of the number of the steps and the errors for finding optimal dose was shorten by new rules. At last, the dose predicted with new rules well on each single occasion of majority of patients in simulation experiments.
Resumo:
Objective: To develop a method for objective quantification of PD motor symptoms related to Off episodes and peak dose dyskinesias, using spiral data gathered by using a touch screen telemetry device. The aim was to objectively characterize predominant motor phenotypes (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Background: A retrospective analysis was conducted on recordings from 65 patients with advanced idiopathic PD from nine different clinics in Sweden, recruited from January 2006 until August 2010. In addition to the patient group, 10 healthy elderly subjects were recruited. Upper limb movement data were collected using a touch screen telemetry device from home environments of the subjects. Measurements with the device were performed four times per day during week-long test periods. On each test occasion, the subjects were asked to trace pre-drawn Archimedean spirals, using the dominant hand. The pre-drawn spiral was shown on the screen of the device. The spiral test was repeated three times per test occasion and they were instructed to complete it within 10 seconds. The device had a sampling rate of 10Hz and measured both position and time-stamps (in milliseconds) of the pen tip. Methods: Four independent raters (FB, DH, AJ and DN) used a web interface that animated the spiral drawings and allowed them to observe different kinematic features during the drawing process and to rate task performance. Initially, a number of kinematic features were assessed including ‘impairment’, ‘speed’, ‘irregularity’ and ‘hesitation’ followed by marking the predominant motor phenotype on a 3-category scale: tremor, bradykinesia and/or choreatic dyskinesia. There were only 2 test occasions for which all the four raters either classified them as tremor or could not identify the motor phenotype. Therefore, the two main motor phenotype categories were bradykinesia and dyskinesia. ‘Impairment’ was rated on a scale from 0 (no impairment) to 10 (extremely severe) whereas ‘speed’, ‘irregularity’ and ‘hesitation’ were rated on a scale from 0 (normal) to 4 (extremely severe). The proposed data-driven method consisted of the following steps. Initially, 28 spatiotemporal features were extracted from the time series signals before being presented to a Multilayer Perceptron (MLP) classifier. The features were based on different kinematic quantities of spirals including radius, angle, speed and velocity with the aim of measuring the severity of involuntary symptoms and discriminate between PD-specific (bradykinesia) and/or treatment-induced symptoms (dyskinesia). A Principal Component Analysis was applied on the features to reduce their dimensions where 4 relevant principal components (PCs) were retained and used as inputs to the MLP classifier. Finally, the MLP classifier mapped these components to the corresponding visually assessed motor phenotype scores for automating the process of scoring the bradykinesia and dyskinesia in PD patients whilst they draw spirals using the touch screen device. For motor phenotype (bradykinesia vs. dyskinesia) classification, the stratified 10-fold cross validation technique was employed. Results: There were good agreements between the four raters when rating the individual kinematic features with intra-class correlation coefficient (ICC) of 0.88 for ‘impairment’, 0.74 for ‘speed’, 0.70 for ‘irregularity’, and moderate agreements when rating ‘hesitation’ with an ICC of 0.49. When assessing the two main motor phenotype categories (bradykinesia or dyskinesia) in animated spirals the agreements between the four raters ranged from fair to moderate. There were good correlations between mean ratings of the four raters on individual kinematic features and computed scores. The MLP classifier classified the motor phenotype that is bradykinesia or dyskinesia with an accuracy of 85% in relation to visual classifications of the four movement disorder specialists. The test-retest reliability of the four PCs across the three spiral test trials was good with Cronbach’s Alpha coefficients of 0.80, 0.82, 0.54 and 0.49, respectively. These results indicate that the computed scores are stable and consistent over time. Significant differences were found between the two groups (patients and healthy elderly subjects) in all the PCs, except for the PC3. Conclusions: The proposed method automatically assessed the severity of unwanted symptoms and could reasonably well discriminate between PD-specific and/or treatment-induced motor symptoms, in relation to visual assessments of movement disorder specialists. The objective assessments could provide a time-effect summary score that could be useful for improving decision-making during symptom evaluation of individualized treatment when the goal is to maximize functional On time for patients while minimizing their Off episodes and troublesome dyskinesias.
Resumo:
BACKGROUND: Shared decision-making (SDM) is an emergent research topic in the field of mental health care and is considered to be a central component of a recovery-oriented system. Despite the evidence suggesting the benefits of this change in the power relationship between users and practitioners, the method has not been widely implemented in clinical practice. OBJECTIVE: The objective of this study was to investigate decisional and information needs among users with mental illness as a prerequisite for the development of a decision support tool aimed at supporting SDM in community-based mental health services in Sweden. METHODS: Three semi-structured focus group interviews were conducted with 22 adult users with mental illness. The transcribed interviews were analyzed using a directed content analysis. This method was used to develop an in-depth understanding of the decisional process as well as to validate and conceptually extend Elwyn et al.'s model of SDM. RESULTS: The model Elwyn et al. have created for SDM in somatic care fits well for mental health services, both in terms of process and content. However, the results also suggest an extension of the model because decisions related to mental illness are often complex and involve a number of life domains. Issues related to social context and individual recovery point to the need for a preparation phase focused on establishing cooperation and mutual understanding as well as a clear follow-up phase that allows for feedback and adjustments to the decision-making process. CONCLUSIONS AND IMPLICATIONS FOR PRACTICE: The current study contributes to a deeper understanding of decisional and information needs among users of community-based mental health services that may reduce barriers to participation in decision-making. The results also shed light on attitudinal, relationship-based, and cognitive factors that are important to consider in adapting SDM in the mental health system.