11 resultados para data-driven simulation

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous casting is a casting process that produces steel slabs in a continuous manner with steel being poured at the top of the caster and a steel strand emerging from the mould below. Molten steel is transferred from the AOD converter to the caster using a ladle. The ladle is designed to be strong and insulated. Complete insulation is never achieved. Some of the heat is lost to the refractories by convection and conduction. Heat losses by radiation also occur. It is important to know the temperature of the melt during the process. For this reason, an online model was previously developed to simulate the steel and ladle wall temperatures during the ladle cycle. The model was developed as an ODE based model using grey box modeling technique. The model’s performance was acceptable and needed to be presented in a user friendly way. The aim of this thesis work was basically to design a GUI that presents steel and ladle wall temperatures calculated by the model and also allow the user to make adjustments to the model. This thesis work also discusses the sensitivity analysis of different parameters involved and their effects on different temperature estimations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic.  The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vehicle activated signs (VAS) display a warning message when drivers exceed a particular threshold. VAS are often installed on local roads to display a warning message depending on the speed of the approaching vehicles. VAS are usually powered by electricity; however, battery and solar powered VAS are also commonplace. This thesis investigated devel-opment of an automatic trigger speed of vehicle activated signs in order to influence driver behaviour, the effect of which has been measured in terms of reduced mean speed and low standard deviation. A comprehen-sive understanding of the effectiveness of the trigger speed of the VAS on driver behaviour was established by systematically collecting data. Specif-ically, data on time of day, speed, length and direction of the vehicle have been collected for the purpose, using Doppler radar installed at the road. A data driven calibration method for the radar used in the experiment has also been developed and evaluated. Results indicate that trigger speed of the VAS had variable effect on driv-ers’ speed at different sites and at different times of the day. It is evident that the optimal trigger speed should be set near the 85th percentile speed, to be able to lower the standard deviation. In the case of battery and solar powered VAS, trigger speeds between the 50th and 85th per-centile offered the best compromise between safety and power consump-tion. Results also indicate that different classes of vehicles report differ-ences in mean speed and standard deviation; on a highway, the mean speed of cars differs slightly from the mean speed of trucks, whereas a significant difference was observed between the classes of vehicles on lo-cal roads. A differential trigger speed was therefore investigated for the sake of completion. A data driven approach using Random forest was found to be appropriate in predicting trigger speeds respective to types of vehicles and traffic conditions. The fact that the predicted trigger speed was found to be consistently around the 85th percentile speed justifies the choice of the automatic model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A challenge for the clinical management of Parkinson's disease (PD) is the large within- and between-patient variability in symptom profiles as well as the emergence of motor complications which represent a significant source of disability in patients. This thesis deals with the development and evaluation of methods and systems for supporting the management of PD by using repeated measures, consisting of subjective assessments of symptoms and objective assessments of motor function through fine motor tests (spirography and tapping), collected by means of a telemetry touch screen device. One aim of the thesis was to develop methods for objective quantification and analysis of the severity of motor impairments being represented in spiral drawings and tapping results. This was accomplished by first quantifying the digitized movement data with time series analysis and then using them in data-driven modelling for automating the process of assessment of symptom severity. The objective measures were then analysed with respect to subjective assessments of motor conditions. Another aim was to develop a method for providing comparable information content as clinical rating scales by combining subjective and objective measures into composite scores, using time series analysis and data-driven methods. The scores represent six symptom dimensions and an overall test score for reflecting the global health condition of the patient. In addition, the thesis presents the development of a web-based system for providing a visual representation of symptoms over time allowing clinicians to remotely monitor the symptom profiles of their patients. The quality of the methods was assessed by reporting different metrics of validity, reliability and sensitivity to treatment interventions and natural PD progression over time. Results from two studies demonstrated that the methods developed for the fine motor tests had good metrics indicating that they are appropriate to quantitatively and objectively assess the severity of motor impairments of PD patients. The fine motor tests captured different symptoms; spiral drawing impairment and tapping accuracy related to dyskinesias (involuntary movements) whereas tapping speed related to bradykinesia (slowness of movements). A longitudinal data analysis indicated that the six symptom dimensions and the overall test score contained important elements of information of the clinical scales and can be used to measure effects of PD treatment interventions and disease progression. A usability evaluation of the web-based system showed that the information presented in the system was comparable to qualitative clinical observations and the system was recognized as a tool that will assist in the management of patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To develop a method for objective quantification of PD motor symptoms related to Off episodes and peak dose dyskinesias, using spiral data gathered by using a touch screen telemetry device. The aim was to objectively characterize predominant motor phenotypes (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Background: A retrospective analysis was conducted on recordings from 65 patients with advanced idiopathic PD from nine different clinics in Sweden, recruited from January 2006 until August 2010. In addition to the patient group, 10 healthy elderly subjects were recruited. Upper limb movement data were collected using a touch screen telemetry device from home environments of the subjects. Measurements with the device were performed four times per day during week-long test periods. On each test occasion, the subjects were asked to trace pre-drawn Archimedean spirals, using the dominant hand. The pre-drawn spiral was shown on the screen of the device. The spiral test was repeated three times per test occasion and they were instructed to complete it within 10 seconds. The device had a sampling rate of 10Hz and measured both position and time-stamps (in milliseconds) of the pen tip. Methods: Four independent raters (FB, DH, AJ and DN) used a web interface that animated the spiral drawings and allowed them to observe different kinematic features during the drawing process and to rate task performance. Initially, a number of kinematic features were assessed including ‘impairment’, ‘speed’, ‘irregularity’ and ‘hesitation’ followed by marking the predominant motor phenotype on a 3-category scale: tremor, bradykinesia and/or choreatic dyskinesia. There were only 2 test occasions for which all the four raters either classified them as tremor or could not identify the motor phenotype. Therefore, the two main motor phenotype categories were bradykinesia and dyskinesia. ‘Impairment’ was rated on a scale from 0 (no impairment) to 10 (extremely severe) whereas ‘speed’, ‘irregularity’ and ‘hesitation’ were rated on a scale from 0 (normal) to 4 (extremely severe). The proposed data-driven method consisted of the following steps. Initially, 28 spatiotemporal features were extracted from the time series signals before being presented to a Multilayer Perceptron (MLP) classifier. The features were based on different kinematic quantities of spirals including radius, angle, speed and velocity with the aim of measuring the severity of involuntary symptoms and discriminate between PD-specific (bradykinesia) and/or treatment-induced symptoms (dyskinesia). A Principal Component Analysis was applied on the features to reduce their dimensions where 4 relevant principal components (PCs) were retained and used as inputs to the MLP classifier. Finally, the MLP classifier mapped these components to the corresponding visually assessed motor phenotype scores for automating the process of scoring the bradykinesia and dyskinesia in PD patients whilst they draw spirals using the touch screen device. For motor phenotype (bradykinesia vs. dyskinesia) classification, the stratified 10-fold cross validation technique was employed. Results: There were good agreements between the four raters when rating the individual kinematic features with intra-class correlation coefficient (ICC) of 0.88 for ‘impairment’, 0.74 for ‘speed’, 0.70 for ‘irregularity’, and moderate agreements when rating ‘hesitation’ with an ICC of 0.49. When assessing the two main motor phenotype categories (bradykinesia or dyskinesia) in animated spirals the agreements between the four raters ranged from fair to moderate. There were good correlations between mean ratings of the four raters on individual kinematic features and computed scores. The MLP classifier classified the motor phenotype that is bradykinesia or dyskinesia with an accuracy of 85% in relation to visual classifications of the four movement disorder specialists. The test-retest reliability of the four PCs across the three spiral test trials was good with Cronbach’s Alpha coefficients of 0.80, 0.82, 0.54 and 0.49, respectively. These results indicate that the computed scores are stable and consistent over time. Significant differences were found between the two groups (patients and healthy elderly subjects) in all the PCs, except for the PC3. Conclusions: The proposed method automatically assessed the severity of unwanted symptoms and could reasonably well discriminate between PD-specific and/or treatment-induced motor symptoms, in relation to visual assessments of movement disorder specialists. The objective assessments could provide a time-effect summary score that could be useful for improving decision-making during symptom evaluation of individualized treatment when the goal is to maximize functional On time for patients while minimizing their Off episodes and troublesome dyskinesias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to design a set of rules for levodopa infusion dose adjustment in Parkinson’s disease based on a simulation experiments. Using this simulator, optimal infusions dose in different conditions were calculated. There are seven conditions (-3 to +3)appearing in a rating scale for Parkinson’s disease patients. By finding mean of the differences between conditions and optimal dose, two sets of rules were designed. The set of rules was optimized by several testing. Usefulness for optimizing the titration procedure of new infusion patients based on rule-based reasoning was investigated. Results show that both of the number of the steps and the errors for finding optimal dose was shorten by new rules. At last, the dose predicted with new rules well on each single occasion of majority of patients in simulation experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis evaluates different sites for a weather measurement system and a suitable PV- simulation for University of Surabaya (UBAYA) in Indonesia/Java. The weather station is able to monitor all common weather phenomena including solar insolation. It is planned to use the data for scientific and educational purposes in the renewable energy studies. During evaluation and installation it falls into place that official specifications from global meteorological organizations could not be meet for some sensors caused by the conditions of UBAYA campus. After arranging the hardware the weather at the site was monitored for period of time. A comparison with different official sources from ground based and satellite bases measurements showed differences in wind and solar radiation. In some cases the monthly average solar insolation was deviating 42 % for satellite-based measurements. For the ground based it was less than 10 %. The average wind speed has a difference of 33 % compared to a source, which evaluated the wind power in Surabaya. The wind direction shows instabilities towards east compared with data from local weather station at the airport. PSET has the chance to get some investments to investigate photovoltaic on there own roof. With several simulations a suitable roof direction and the yearly and monthly outputs are shown. With a 7.7 kWpeak PV installation with the latest crystalline technology on the market 8.82 MWh/year could be achieved with weather data from 2012. Thin film technology could increase the value up to 9.13 MWh/year. However, the roofs have enough area to install PV. Finally the low price of electricity in Indonesia makes it not worth to feed in the energy into the public grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The demand for cooling and air-conditioning of building is increasingly ever growing. This increase is mostly due to population and economic growth in developing countries, and also desire for a higher quality of thermal comfort. Increase in the use of conventional cooling systems results in larger carbon footprint and more greenhouse gases considering their higher electricity consumption, and it occasionally creates peaks in electricity demand from power supply grid. Solar energy as a renewable energy source is an alternative to drive the cooling machines since the cooling load is generally high when solar radiation is high. This thesis examines the performance of PV/T solar collector manufactured by Solarus company in a solar cooling system for an office building in Dubai, New Delhi, Los Angeles and Cape Town. The study is carried out by analyzing climate data and the requirements for thermal comfort in office buildings. Cooling systems strongly depend on weather conditions and local climate. Cooling load of buildings depend on many parameters such as ambient temperature, indoor comfort temperature, solar gain to the building and internal gains including; number of occupant and electrical devices. The simulations were carried out by selecting a suitable thermally driven chiller and modeling it with PV/T solar collector in Polysun software. Fractional primary energy saving and solar fraction were introduced as key figures of the project to evaluate the performance of cooling system. Several parametric studies and simulations were determined according to PV/T aperture area and hot water storage tank volume. The fractional primary energy saving analysis revealed that thermally driven chillers, particularly adsorption chillers are not suitable to be utilizing in small size of solar cooling systems in hot and tropic climates such as Dubai and New Delhi. Adsorption chillers require more thermal energy to meet the cooling load in hot and dry climates. The adsorption chillers operate in their full capacity and in higher coefficient of performance when they run in a moderate climate since they can properly reject the exhaust heat. The simulation results also indicated that PV/T solar collector have higher efficiency in warmer climates, however it requires a larger size of PV/T collectors to supply the thermally driven chillers for providing cooling in hot climates. Therefore using an electrical chiller as backup gives much better results in terms of primary energy savings, since PV/T electrical production also can be used for backup electrical chiller in a net metering mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generalized linear mixed models are flexible tools for modeling non-normal data and are useful for accommodating overdispersion in Poisson regression models with random effects. Their main difficulty resides in the parameter estimation because there is no analytic solution for the maximization of the marginal likelihood. Many methods have been proposed for this purpose and many of them are implemented in software packages. The purpose of this study is to compare the performance of three different statistical principles - marginal likelihood, extended likelihood, Bayesian analysis-via simulation studies. Real data on contact wrestling are used for illustration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found. © 2012 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit the profit margins of sawmills. To address this challenge, a simulation model has been developed. However, as numerous alternatives are available for arranging bins, simulating all possibilities will take an enormous amount of time and it is computationally infeasible. A discrete-event simulation model incorporating meta-heuristic algorithms has therefore been investigated in this study. Preliminary investigations indicate that the results achieved by GA based simulation model are promising and better than the other meta-heuristic algorithm. Further, a sensitivity analysis has been done on the GA based optimal arrangement which contributes to gaining insights and knowledge about the real system that ultimately leads to improved and enhanced efficiency in sawmill yards. It is expected that the results achieved in the work will support timber industries in making optimal decisions with respect to arrangement of storage bins in a sawmill yard.