5 resultados para crowdfunding,equity-based crowdfunding,financial forecasting
em Dalarna University College Electronic Archive
Resumo:
Due to the rapid changes that governs the Swedish financial sector such as financial deregulations and technological innovations, it is imperative to examine the extent to which the Swedish Financial institutions had performed amid these changes. For this to be accomplish, the work investigates what are the determinants of performance for Swedish Financial Monetary Institutions? Assumptions were derived from theoretical and empirical literatures to investigate the authenticity of this research question using seven explanatory variables. Two models were specified using Returns on Asset (ROA) and Return on Equity (ROE) as the main performance indicators and for the sake of reliability and validity, three different estimators such as Ordinary Least Square (OLS), Generalized Least Square (GLS) and Feasible Generalized Least Square (FGLS) were employed. The Akaike Information Criterion (AIC) was also used to verify which specification explains performance better while performing robustness check of parameter estimates was done by correcting for standard errors. Based on the findings, ROA specification proves to have the lowest Akaike Information Criterion (AIC) and Standard errors compared to ROE specification. Under ROA, two variables; the profit margins and the Interest coverage ratio proves to be statistically significant while under ROE just the interest coverage ratio (ICR) for all the estimators proves significant. The result also shows that the FGLS is the most efficient estimator, then follows the GLS and the last OLS. when corrected for SE robust, the gearing ratio which measures the capital structure becomes significant under ROA and its estimate become positive under ROE robust. Conclusions were drawn that, within the period of study three variables (ICR, profit margins and gearing) shows significant and four variables were insignificant. The overall findings show that the institutions strive to their best to maximize returns but these returns were just normal to cover their costs of operation. Much should be done as per the ASC theory to avoid liquidity and credit risks problems. Again, estimated values of ICR and profit margins shows that a considerable amount of efforts with sound financial policies are required to increase performance by one percentage point. Areas of further research could be how the individual stochastic factors such as the Dupont model, repo rates, inflation, GDP etc. can influence performance.
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
Ghana faces a macroeconomic problem of inflation for a long period of time. The problem in somehow slows the economic growth in this country. As we all know, inflation is one of the major economic challenges facing most countries in the world especially those in African including Ghana. Therefore, forecasting inflation rates in Ghana becomes very important for its government to design economic strategies or effective monetary policies to combat any unexpected high inflation in this country. This paper studies seasonal autoregressive integrated moving average model to forecast inflation rates in Ghana. Using monthly inflation data from July 1991 to December 2009, we find that ARIMA (1,1,1)(0,0,1)12 can represent the data behavior of inflation rate in Ghana well. Based on the selected model, we forecast seven (7) months inflation rates of Ghana outside the sample period (i.e. from January 2010 to July 2010). The observed inflation rate from January to April which was published by Ghana Statistical Service Department fall within the 95% confidence interval obtained from the designed model. The forecasted results show a decreasing pattern and a turning point of Ghana inflation in the month of July.
Resumo:
Wider economic benefits resulting from extended geographical mobility is one argument for investments in high-speed rail. More specifically, the argument for high-speed trains in Sweden has been that they can help to further spatially extend labor market regions which in turn has a positive effect on growth and development. In this paper the aim is to cartographically visualize the potential size of the labor markets in areas that could be affected by possible future high-speed trains. The visualization is based on the forecasts of labor mobility with public transport made by the Swedish national mobility transport forecasting tool, SAMPERS, for two alternative high-speed rail scenarios. The analysis, not surprisingly, suggests that the largest impact of high-speed trains results in the area where the future high speed rail tracks are planned to be built. This expected effect on local labor market regions of high-speed trains could mean that possible regional economic development effects also are to be expected in this area. However, the results, in general, from the SAMPERS forecasts indicaterelatively small increases in local labor market potentials.
Resumo:
Background In the Neonatal health – Knowledge into Practice (NeoKIP) trial in Vietnam, local stakeholder groups, supported by trained laywomen acting as facilitators, promoted knowledge translation (KT) resulting in decreased neonatal mortality. In general, as well as in the community-based NeoKIP trial, there is a need to further understand how context influences KT interventions in low- and middle-income countries (LMICs). Thus, the objective of this study was to explore the influence of context on the facilitation process in the NeoKIP intervention. Methods A secondary content analysis was performed on 16 Focus Group Discussions with facilitators and participants of the stakeholder groups, applying an inductive approach to the content on context through naïve understanding and structured analysis. Results The three main-categories of context found to influence the facilitation process in the NeoKIP intervention were: (1) Support and collaboration of local authorities and other communal stakeholders; (2) Incentives to, and motivation of, participants; and (3) Low health care coverage and utilization. In particular, the role of local authorities in a KT intervention was recognized as important. Also, while project participants expected financial incentives, non-financial benefits such as individual learning were considered to balance the lack of reimbursement in the NeoKIP intervention. Further, project participants recognized the need to acknowledge the needs of disadvantaged groups. Conclusions This study provides insight for further understanding of the influence of contextual aspects to improve effects of a KT intervention in Vietnam. We suggest that future KT interventions should apply strategies to improve local authorities’ engagement, to identify and communicate non-financial incentives, and to make disadvantaged groups a priority. Further studies to evaluate the contextual aspects in KT interventions in LMICs are also needed.