14 resultados para cost-effective
em Dalarna University College Electronic Archive
Resumo:
The objective of this study was to evaluate and compare the print performance of some of the new most promising, cost effective absorbent pigments specialised for inkjet coatings on the market in a continuous drive to find an alternative to silica. The target was a lower production cost for ArjoWiggins inkjet products, OMD 01 and OMD 02. Five absorbent pigments are being evaluated through measuring the qualities of the coating mix itself, visual evaluations of print performance and physical testing of the coated paper. Pigments 1,2 and 3, which all are said to be tailored for inkjet coatings, did not reach the print performance needed for an OMD 01 and OMD 02 equal, due to severe bleed and feathering identified especially on the Epson 950 printer. They are therefore currently not seen as viable formulations. A blend of 50% pigment 5 and 50% silica had excellent print performance as OMD 01 and OMD 02 equivalents and is therefore recommended as a potential alternative to 100% silica. It is of the company’s interest to find a more cost effective solution to their inkjet coatings, and a 50/50 blend of Pigment 5 will save the company more than 35 000 euro per year.
Resumo:
The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.
Resumo:
Train dispatchers faces lots of challenges due to conflicts which causes delays of trains as a result of solving possible dispatching problems the network faces. The major challenge is for the train dispatchers to make the right decision and have reliable, cost effective and much more faster approaches needed to solve dispatching problems. This thesis work provides detail information on the implementation of different heuristic algorithms for train dispatchers in solving train dispatching problems. The library data files used are in xml file format and deals with both single and double tracks between main stations. The main objective of this work is to build different heuristic algorithms to solve unexpected delays faced by train dispatchers and to help in making right decisions on steps to take to have reliable and cost effective solution to the problems. These heuristics algorithms proposed were able to help dispatchers in making right decisions when solving train dispatching problems.
Resumo:
Since the last decade the problem of surface inspection has been receiving great attention from the scientific community, the quality control and the maintenance of products are key points in several industrial applications.The railway associations spent much money to check the railway infrastructure. The railway infrastructure is a particular field in which the periodical surface inspection can help the operator to prevent critical situations. The maintenance and monitoring of this infrastructure is an important aspect for railway association.That is why the surface inspection of railway also makes importance to the railroad authority to investigate track components, identify problems and finding out the way that how to solve these problems. In railway industry, usually the problems find in railway sleepers, overhead, fastener, rail head, switching and crossing and in ballast section as well. In this thesis work, I have reviewed some research papers based on AI techniques together with NDT techniques which are able to collect data from the test object without making any damage. The research works which I have reviewed and demonstrated that by adopting the AI based system, it is almost possible to solve all the problems and this system is very much reliable and efficient for diagnose problems of this transportation domain. I have reviewed solutions provided by different companies based on AI techniques, their products and reviewed some white papers provided by some of those companies. AI based techniques likemachine vision, stereo vision, laser based techniques and neural network are used in most cases to solve the problems which are performed by the railway engineers.The problems in railway handled by the AI based techniques performed by NDT approach which is a very broad, interdisciplinary field that plays a critical role in assuring that structural components and systems perform their function in a reliable and cost effective fashion. The NDT approach ensures the uniformity, quality and serviceability of materials without causing any damage of that materials is being tested. This testing methods use some way to test product like, Visual and Optical testing, Radiography, Magnetic particle testing, Ultrasonic testing, Penetrate testing, electro mechanic testing and acoustic emission testing etc. The inspection procedure has done periodically because of better maintenance. This inspection procedure done by the railway engineers manually with the aid of AI based techniques.The main idea of thesis work is to demonstrate how the problems can be reduced of thistransportation area based on the works done by different researchers and companies. And I have also provided some ideas and comments according to those works and trying to provide some proposal to use better inspection method where it is needed.The scope of this thesis work is automatic interpretation of data from NDT, with the goal of detecting flaws accurately and efficiently. AI techniques such as neural networks, machine vision, knowledge-based systems and fuzzy logic were applied to a wide spectrum of problems in this area. Another scope is to provide an insight into possible research methods concerning railway sleeper, fastener, ballast and overhead inspection by automatic interpretation of data.In this thesis work, I have discussed about problems which are arise in railway sleepers,fastener, and overhead and ballasted track. For this reason I have reviewed some research papers related with these areas and demonstrated how their systems works and the results of those systems. After all the demonstrations were taking place of the advantages of using AI techniques in contrast with those manual systems exist previously.This work aims to summarize the findings of a large number of research papers deploying artificial intelligence (AI) techniques for the automatic interpretation of data from nondestructive testing (NDT). Problems in rail transport domain are mainly discussed in this work. The overall work of this paper goes to the inspection of railway sleepers, fastener, ballast and overhead.
Resumo:
The purpose of the work is to develop a cost effective semistationary CPC concentrator for a string PV-module. A novel method of using annual irradiation distribution diagram projected in a north-south vertical plane is developed. This method allows us easily to determine the optimum acceptance angle of the concentrator and the required number of annual tilts. Concentration ranges of 2-5x are investigated with corresponding acceptance angles between 5 and 15°. The concentrator should be tilted 2-6 times per year. Experiments has been performed on a string module of 10 cells connected in a series and equipped with a compound parabolic concentrator with C = 3.3X. Measurement show that the output will increase with a factor of 2-2.5 for the concentrator module, compared to a reference module without concentrator. If very cheap aluminium reflectors are used the costs for the PV-module can be decreased nearly by a factor of two.
Resumo:
PV-Wind-Hybrid systems for stand-alone applications have the potential to be more cost efficient compared to PV-alone systems. The two energy sources can, to some extent, compensate each others minima. The combination of solar and wind should be especially favorable for locations at high latitudes such as Sweden with a very uneven distribution of solar radiation during the year. In this article PV-Wind-Hybrid systems have been studied for 11 locations in Sweden. These systems supply the household electricity for single family houses. The aim was to evaluate the system costs, the cost of energy generated by the PV-Wind-Hybrid systems, the effect of the load size and to what extent the combination of these two energy sources can reduce the costs compared to a PV-alone system. The study has been performed with the simulation tool HOMER developed by the National Renewable Energy Laboratory (NREL) for techno-economical feasibility studies of hybrid systems. The results from HOMER show that the net present costs (NPC) for a hybrid system designed for an annual load of 6000 kWh with a capacity shortage of 10% will vary between $48,000 and $87,000. Sizing the system for a load of 1800 kWh/year will give a NPC of $17,000 for the best and $33,000 for the worst location. PV-Wind-Hybrid systems are for all locations more cost effective compared to PV-alone systems. Using a Hybrid system is reducing the NPC for Borlänge by 36% and for Lund by 64%. The cost per kWh electricity varies between $1.4 for the worst location and $0.9 for the best location if a PV-Wind-Hybrid system is used.
Resumo:
Companies are focusing on efforts increasing the overall efficiency at the same time as the ability to meet customer needs becomes even more important. There is a need to improve the organisation and the product design at the same time through the visualisation of how a product family design should be performed in order to adapt to customers, company internal issues, and long-term strategy. Therefore, there is a need for qualified personnel in today’s companies with the knowledge of product development and modularity. The graduate course Development of Modular Products at Högskolan Dalarna has the objective to provide such knowledge. As a part of the course, each student will individually perform extensive research within a chosen area with respect to Product Development and Modularity. This proceeding is the result of the students own work and was presented during a two day seminar at Dalarna University. The contents of the papers cover many areas, from the identification of customer needs to cost effective manufacturing, and benefits of modularisation. The reader of this proceeding will not only benefit from many areas within Product Development and Modularity but also from the colour of many cultures. In this proceeding, students from nine countries are represented (Bangladesh, China, Costa Rica, Germany, Holland, India, Luxembourg Nigeria, and Sweden). Enjoy the reading.
Resumo:
This thesis is about new digital moving image recording technologies and how they augment the distribution of creativity and the flexibility in moving image production systems, but also impose constraints on how images flow through the production system. The central concept developed in this thesis is ‘creative space’ which links quality and efficiency in moving image production to time for creative work, capacity of digital tools, user skills and the constitution of digital moving image material. The empirical evidence of this thesis is primarily based on semi-structured interviews conducted with Swedish film and TV production representatives.This thesis highlights the importance of pre-production technical planning and proposes a design management support tool (MI-FLOW) as a way to leverage functional workflows that is a prerequisite for efficient and cost effective moving image production.
Resumo:
A Simple way to improve solar cell efficiency is to enhance the absorption of light and reduce the shading losses. One of the main objectives for the photovoltaic roadmap is the reduction of metalized area on the front side of solar cell by fin lines. Industrial solar cell production uses screen-printing of metal pastes with a limit in line width of 70-80 μm. This paper will show a combination of the technique of laser grooved buried contact (LGBC) and Screen-printing is able to improve in fine lines and higher aspect ratio. Laser grooving is a technique to bury the contact into the surface of silicon wafer. Metallization is normally done with electroless or electrolytic plating method, which a high cost. To decrease the relative cost, more complex manufacturing process was needed, therefore in this project the standard process of buried contact solar cells has been optimized in order to gain a laser grooved buried contact solar cell concept with less processing steps. The laser scribing process is set at the first step on raw mono-crystalline silicon wafer. And then the texturing etch; phosphorus diffusion and SiNx passivation process was needed once. While simultaneously optimizing the laser scribing process did to get better results on screen-printing process with fewer difficulties to fill the laser groove. This project has been done to make the whole production of buried contact solar cell with fewer steps and could present a cost effective opportunity to solar cell industries.
Resumo:
Charter tourism as a product: a sociological analysis of agency in the experience economy In recent years charter tourism as a convenient and cost-effective mode of travelling has been declining. This may be related to dominating societal ideals promoting self-actualization, individual exploration and spontaneity. However, not much is known about the development of ideals and practices among charter tourists. By use of ethnographic fieldwork methodology, including pre-departure and post-travel telephone interviews, this exploratory study investigated a group of Danish charter tourists travelling to Gran Canaria. Results show that the charter tourists were active in navigating between a series of central dilemmas posed by the consumption of a mass product in an individualized societal context, thereby shaping their experiences to form a desirable tourist product.
Resumo:
In this thesis the solar part of a large grid-connected photovoltaic system design has been done. The main purpose was to size and optimize the system and to present figures helping to evaluate the prospective project rationality, which can potentially be constructed on a contaminated area in Falun. The methodology consisted in PV market study and component selection, site analysis and defining suitable area for solar installation; and system configuration optimization based on PVsyst simulations and Levelized Cost of Energy calculations. The procedure was mainly divided on two parts, preliminary and detailed sizing. In the first part the objective was complex, which included the investigation of the most profitable component combination and system optimization due to tilt and row distance. It was done by simulating systems with different components and orientations, which were sized for the same 100kW inverter in order to make a fair comparison. For each simulated result a simplified LCOE calculation procedure was applied. The main results of this part show that with the price of 0.43 €/Wp thin-film modules were the most cost effective solution for the case with a great advantage over crystalline type in terms of financial attractiveness. From the results of the preliminary study it was possible to select the optimal system configuration, which was used in the detailed sizing as a starting point. In this part the PVsyst simulations were run, which included full scale system design considering near shadings created by factory buildings. Additionally, more complex procedure of LCOE calculation has been used here considered insurances, maintenance, time value of money and possible cost reduction due to the system size. Two system options were proposed in final results; both cover the same area of 66000 m2. The first one represents an ordinary South faced design with 1.1 MW nominal power, which was optimized for the highest performance. According to PVsyst simulations, this system should produce 1108 MWh/year with the initial investment of 835,000 € and 0.056 €/kWh LCOE. The second option has an alternative East-West orientation, which allows to cover 80% of occupied ground and consequently have 6.6 MW PV nominal power. The system produces 5388 MWh/year costs about 4500,000 € and delivers electricity with the same price of 0.056 €/kWh. Even though the EW solution has 20% lower specific energy production, it benefits mainly from lower relative costs for inverters, mounting and annual maintenance expenses. After analyzing the performance results, among the two alternatives none of the systems showed a clear superiority so there was no optimal system proposed. Both, South and East-West solutions have own advantages and disadvantages in terms of energy production profile, configuration, installation and maintenance. Furthermore, the uncertainty due to cost figures assumptions restricted the results veracity.
Resumo:
With the building sector accounting for around 40% of the total energy consumption in the EU, energy efficiency in buildings is and continues to be an important issue. Great progress has been made in reducing the energy consumption in new buildings, but the large stock of existing buildings with poor energy performance is probably an even more crucial area of focus. This thesis deals with energy efficiency measures that can be suitable for renovation of existing houses, particularly low-temperature heating systems and ventilation systems with heat recovery. The energy performance, environmental impact and costs are evaluated for a range of system combinations, for small and large houses with various heating demands and for different climates in Europe. The results were derived through simulation with energy calculation tools. Low-temperature heating and air heat recovery were both found to be promising with regard to increasing energy efficiency in European houses. These solutions proved particularly effective in Northern Europe as low-temperature heating and air heat recovery have a greater impact in cold climates and on houses with high heating demands. The performance of heat pumps, both with outdoor air and exhaust air, was seen to improve with low-temperature heating. The choice between an exhaust air heat pump and a ventilation system with heat recovery is likely to depend on case specific conditions, but both choices are more cost-effective and have a lower environmental impact than systems without heat recovery. The advantage of the heat pump is that it can be used all year round, given that it produces DHW. Economic and environmental aspects of energy efficiency measures do not always harmonize. On the one hand, lower costs can sometimes mean larger environmental impact; on the other hand there can be divergence between different environmental aspects. This makes it difficult to define financial subsidies to promote energy efficiency measures.
Resumo:
Exploiting solar energy technology for both heating and cooling purposes has the potential of meeting an appreciable portion of the energy demand in buildings throughout the year. By developing an integrated, multi-purpose solar energy system, that can operate all twelve months of the year, a high utilisation factor can be achieved which translates to more economical systems. However, there are still some techno-economic barriers to the general commercialisation and market penetration of such technologies. These are associated with high system and installation costs, significant system complexity, and lack of knowledge of system implementation and expected performance. A sorption heat pump module that can be integrated directly into a solar thermal collector has thus been developed in order to tackle the aforementioned market barriers. This has been designed for the development of cost-effective pre-engineered solar energy system kits that can provide both heating and cooling. This thesis summarises the characterisation studies of the operation of individual sorption modules, sorption module integrated solar collectors and a full solar heating and cooling system employing sorption module integrated collectors. Key performance indicators for the individual sorption modules showed cooling delivery for 6 hours at an average power of 40 W and a temperature lift of 21°C. Upon integration of the sorption modules into a solar collector, measured solar radiation energy to cooling energy conversion efficiencies (solar cooling COP) were between 0.10 and 0.25 with average cooling powers between 90 and 200 W/m2 collector aperture area. Further investigations of the sorption module integrated collectors implementation in a full solar heating and cooling system yielded electrical cooling COP ranging from 1.7 to 12.6 with an average of 10.6 for the test period. Additionally, simulations were performed to determine system energy and cost saving potential for various system sizes over a full year of operation for a 140 m2 single-family dwelling located in Madrid, Spain. Simulations yielded an annual solar fraction of 42% and potential cost savings of €386 per annum for a solar heating and cooling installation employing 20m2 of sorption integrated collectors.
Resumo:
Increasing energy use has caused many environmental problems including global warming. Energy use is growing rapidly in developing countries and surprisingly a remarkable portion of it is associated with consumed energy to keep the temperature comfortable inside the buildings. Therefore, identifying renewable technologies for cooling and heating is essential. This study introduced applications of steel sheets integrated into the buildings to save energy based on existing technologies. In addition, the proposed application was found to have a considerable chance of market success. Also, satisfying energy needs for space heating and cooling in a single room by using one of the selected applications in different Köppen climate classes was investigated to estimate which climates have a proper potential for benefiting from the application. This study included three independent parts and the results related to each part have been used in the next part. The first part recognizes six different technologies through literature review including Cool Roof, Solar Chimney, Steel Cladding of Building, Night Radiative Cooling, Elastomer Metal Absorber, and Solar Distillation. The second part evaluated the application of different technologies by gathering the experts’ ideas via performing a Delphi method. The results showed that the Solar Chimney has a proper chance for the market. The third part simulated both a solar chimney and a solar chimney with evaporation which were connected to a single well insulated room with a considerable thermal mass. The combination was simulated as a system to estimate the possibility of satisfying cooling needs and heating needs in different climate classes. A Trombe-wall was selected as a sample design for the Solar Chimney and was simulated in different climates. The results implied that the solar chimney had the capability of reducing the cooling needs more than 25% in all of the studied locations and 100% in some locations with dry or temperate climate such as Mashhad, Madrid, and Istanbul. It was also observed that the heating needs were satisfied more than 50% in all of the studied locations, even for the continental climate such as Stockholm and 100% in most locations with a dry climate. Therefore, the Solar Chimney reduces energy use, saves environment resources, and it is a cost effective application. Furthermore, it saves the equipment costs in many locations. All the results mentioned above make the solar chimney a very practical and attractive tool for a wide range of climates.