6 resultados para cost accounting methods
em Dalarna University College Electronic Archive
Resumo:
In this paper Swedish listed companies’ use of capital budgeting and cost of capital estimation methods in 2005 and 2008 are examined. The relation between company characteristics and choice of methods is investigated and both within-country longitudinal and cross-country comparisons are made. Larger companies seem to have used capital budgeting methods more frequently than smaller companies. When compared to U.S. and continental European companies, Swedish listed companies employed capital budgeting methods less frequently. In 2005 the most common method for establishing the cost of equity was by asking the investors what return they required. By 2008 CAPM was instead the most utilised method, which could indicate greater sophistication. The use of project risk when evaluating investments also seems to have gained in popularity, while the use of company risk declined. Overall, the use of sophisticated capital budgeting and cost of capital estimation methods seem to be rising and the use of less sophisticated methods declining.
Resumo:
This thesis uses zonal travel cost method (ZTCM) to estimate consumer surplus of Peace & Love festival in Borlänge, Sweden. The study defines counties as zones of origin of the visitors. Visiting rates from each zone are estimated based on survey data. The study is novel due to the fact that mostly TCM has been applied in the environmental and recreational sector, not for short term events, like P&L festival. The analysis shows that travel cost has a significantly negative effect on visiting rate as expected. Even though income has previously shown to be significant in similar studies, it turns out to be insignificant in this study. A point estimate for the total consumer surplus of P&L festival is 35.6 million Swedish kronor. However, this point estimate is associated with high uncertainty since a 95 % confidence interval for it is (17.9, 53.2). It is also important to note that the estimated value only represents one part of the total economic value, the other values of the festival's totaleconomic value have not been estimated in this thesis.
Resumo:
This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision. Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes. The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).
Resumo:
Purpose: This paper aims to extend and contribute to prior research on the association between company characteristics and choice of capital budgeting methods (CBMs). Design/methodology/approach: A multivariate regression analysis on questionnaire data from 2005 and 2008 is used to study which factors determine the choice of CBMs in Swedish listed companies. Findings: Our results supported hypotheses that Swedish listed companies have become more sophisticated over the years (or at least less unsophisticated) which indicates a closing of the theory-practice gap; that companies with greater leverage used payback more often; and that companies with stricter debt targets and less management ownership employed accounting rate of return more frequent. Moreover, larger companies used CBMs more often. Originality/value: The paper contributes to prior research within this field by being the first Swedish study to examine the association between use of CBMs and as many as twelve independent variables, including changes over time, by using multivariate regression analysis. The results are compared to a US and a continental European study.
Resumo:
Shearing is the process where sheet metal is mechanically cut between two tools. Various shearing technologies are commonly used in the sheet metal industry, for example, in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material. The constant development of sheet metals toward higher strength and formability leads to increased forces on the shearing equipment and tools. Shearing of new sheet materials imply new suitable shearing parameters. Investigations of the shearing parameters through live tests in the production are expensive and separate experiments are time consuming and requires specialized equipment. Studies involving a large number of parameters and coupled effects are therefore preferably performed by finite element based simulations. Accurate experimental data is still a prerequisite to validate such simulations. There is, however, a shortage of accurate experimental data to validate such simulations. In industrial shearing processes, measured forces are always larger than the actual forces acting on the sheet, due to friction losses. Shearing also generates a force that attempts to separate the two tools with changed shearing conditions through increased clearance between the tools as result. Tool clearance is also the most common shearing parameter to adjust, depending on material grade and sheet thickness, to moderate the required force and to control the final sheared edge geometry. In this work, an experimental procedure that provides a stable tool clearance together with accurate measurements of tool forces and tool displacements, was designed, built and evaluated. Important shearing parameters and demands on the experimental set-up were identified in a sensitivity analysis performed with finite element simulations under the assumption of plane strain. With respect to large tool clearance stability and accurate force measurements, a symmetric experiment with two simultaneous shears and internal balancing of forces attempting to separate the tools was constructed. Steel sheets of different strength levels were sheared using the above mentioned experimental set-up, with various tool clearances, sheet clamping and rake angles. Results showed that tool penetration before fracture decreased with increased material strength. When one side of the sheet was left unclamped and free to move, the required shearing force decreased but instead the force attempting to separate the two tools increased. Further, the maximum shearing force decreased and the rollover increased with increased tool clearance. Digital image correlation was applied to measure strains on the sheet surface. The obtained strain fields, together with a material model, were used to compute the stress state in the sheet. A comparison, up to crack initiation, of these experimental results with corresponding results from finite element simulations in three dimensions and at a plane strain approximation showed that effective strains on the surface are representative also for the bulk material. A simple model was successfully applied to calculate the tool forces in shearing with angled tools from forces measured with parallel tools. These results suggest that, with respect to tool forces, a plane strain approximation is valid also at angled tools, at least for small rake angles. In general terms, this study provide a stable symmetric experimental set-up with internal balancing of lateral forces, for accurate measurements of tool forces, tool displacements, and sheet deformations, to study the effects of important shearing parameters. The results give further insight to the strain and stress conditions at crack initiation during shearing, and can also be used to validate models of the shearing process.