5 resultados para conditional likelihood

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a natural experiment, this paper studies the impact of an informal sanctioning mechanism on individuals’ voluntary contribution to a public good. Cross-country skiers’ actual cash contributions in two ski resorts, one with and one without an informal sanctioning system, are used. I find the contributing share to be higher in the informal sanctioning system (79 percent) than in the non-sanctioning system (36 percent). Previous studies in one-shot public good situations have found an increasing conditional contribution (CC) function, i.e. the relationship between expected average contributions of other group members and the individual’s own contribution. In contrast, the present results suggest that the CC-function in the non-sanctioning system is non-increasing at high perceived levels of others’ contribution. This relationship deserves further testing in lab.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider methods for estimating causal effects of treatment in the situation where the individuals in the treatment and the control group are self selected, i.e., the selection mechanism is not randomized. In this case, simple comparison of treated and control outcomes will not generally yield valid estimates of casual effects. The propensity score method is frequently used for the evaluation of treatment effect. However, this method is based onsome strong assumptions, which are not directly testable. In this paper, we present an alternative modeling approachto draw causal inference by using share random-effect model and the computational algorithm to draw likelihood based inference with such a model. With small numerical studies and a real data analysis, we show that our approach gives not only more efficient estimates but it is also less sensitive to model misspecifications, which we consider, than the existing methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the techniques of likelihood prediction for the generalized linear mixed models. Methods of likelihood prediction is explained through a series of examples; from a classical one to more complicated ones. The examples show, in simple cases, that the likelihood prediction (LP) coincides with already known best frequentist practice such as the best linear unbiased predictor. The paper outlines a way to deal with the covariate uncertainty while producing predictive inference. Using a Poisson error-in-variable generalized linear model, it has been shown that in complicated cases LP produces better results than already know methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new version (> 2.0) of the hglm package for fitting hierarchical generalized linear models (HGLMs) with spatially correlated random effects. CAR() and SAR() families for conditional and simultaneous autoregressive random effects were implemented. Eigen decomposition of the matrix describing the spatial structure (e.g., the neighborhood matrix) was used to transform the CAR/SAR random effects into an independent, but eteroscedastic, Gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR and SAR models. This gives a computationally efficient algorithm for moderately sized problems.