2 resultados para combinatorial optimisation

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing costs and competitive business strategies are pushing sawmill enterprises to make an effort for optimization of their process management. Organizational decisions mainly concentrate on performance and reduction of operational costs in order to maintain profit margins. Although many efforts have been made, effective utilization of resources, optimal planning and maximum productivity in sawmill are still challenging to sawmill industries. Many researchers proposed the simulation models in combination with optimization techniques to address problems of integrated logistics optimization. The combination of simulation and optimization technique identifies the optimal strategy by simulating all complex behaviours of the system under consideration including objectives and constraints. During the past decade, an enormous number of studies were conducted to simulate operational inefficiencies in order to find optimal solutions. This paper gives a review on recent developments and challenges associated with simulation and optimization techniques. It was believed that the review would provide a perfect ground to the authors in pursuing further work in optimizing sawmill yard operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of a heuristic solution to a NP-hard combinatorial problem is hard to assess. A few studies have advocated and tested statistical bounds as a method for assessment. These studies indicate that statistical bounds are superior to the more widely known and used deterministic bounds. However, the previous studies have been limited to a few metaheuristics and combinatorial problems and, hence, the general performance of statistical bounds in combinatorial optimization remains an open question. This work complements the existing literature on statistical bounds by testing them on the metaheuristic Greedy Randomized Adaptive Search Procedures (GRASP) and four combinatorial problems. Our findings confirm previous results that statistical bounds are reliable for the p-median problem, while we note that they also seem reliable for the set covering problem. For the quadratic assignment problem, the statistical bounds has previously been found reliable when obtained from the Genetic algorithm whereas in this work they found less reliable. Finally, we provide statistical bounds to four 2-path network design problem instances for which the optimum is currently unknown.