7 resultados para coefficient of digestibility

em Dalarna University College Electronic Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Friction plays a key role in causing slipperiness as a low coefficient of friction on the road may result in slippery and hazardous conditions. Analyzing the strong relation between friction and accident risk on winter roads is a difficult task. Many weather forecasting organizations use a variety of standard and bespoke methods to predict the coefficient of friction on roads. This article proposes an approach to predict the extent of slipperiness by building and testing an expert system. It estimates the coefficient of friction on winter roads in the province of Dalarna, Sweden using the prevailing weather conditions as a basis. Weather data from the road weather information system, Sweden (RWIS) was used. The focus of the project was to use the expert system as a part of a major project in VITSA, within the domain of intelligent transport systems

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photovoltaic Thermal/Hybrid collectors are an emerging technology that combines PV and solar thermal collectors by producing heat and electricity simultaneously. In this paper, the electrical performance evaluation of a low concentrating PVT collector was done through two testing parts: power comparison and performance ratio testing. For the performance ratio testing, it is required to identify and measure the factors affecting the performance ratio on a low concentrating PVT collector. Factors such as PV cell configuration, collector acceptance angle, flow rate, tracking the sun, temperature dependence and diffuse to irradiance ratio. Solarus low concentrating PVT collector V12 was tested at Dalarna University in Sweden using the electrical equipment at the solar laboratory. The PV testing has showed differences between the two receivers. Back2 was producing 1.8 energy output more than Back1 throughout the day. Front1 and Front2 were almost the same output performance. Performance tests showed that the cell configuration for Receiver2 with cells grouping (6- 32-32-6) has proved to have a better performance ratio when to it comes to minimizing the shading effect leading to more output power throughout the day because of lowering the mismatch losses. Different factors were measured and presented in this thesis in chapter 5. With the current design, it has been obtained a peak power at STC of 107W per receiver. The solar cells have an electrical efficiency of approximately 19% while the maximum measured electrical efficiency for the collector was approximately 18 % per active cell area, in addition to a temperature coefficient of -0.53%/ ˚C. Finally a recommendation was done to help Solarus AB to know how much the electrical performance is affected during variable ambient condition and be able to use the results for analyzing and introducing new modification if needed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To investigate whether spirography-based objective measures are able to effectively characterize the severity of unwanted symptom states (Off and dyskinesia) and discriminate them from motor state of healthy elderly subjects. Background: Sixty-five patients with advanced Parkinson’s disease (PD) and 10 healthy elderly (HE) subjects performed repeated assessments of spirography, using a touch screen telemetry device in their home environments. On inclusion, the patients were either treated with levodopa-carbidopa intestinal gel or were candidates for switching to this treatment. On each test occasion, the subjects were asked trace a pre-drawn Archimedes spiral shown on the screen, using an ergonomic pen stylus. The test was repeated three times and was performed using dominant hand. A clinician used a web interface which animated the spiral drawings, allowing him to observe different kinematic features, like accelerations and spatial changes, during the drawing process and to rate different motor impairments. Initially, the motor impairments of drawing speed, irregularity and hesitation were rated on a 0 (normal) to 4 (extremely severe) scales followed by marking the momentary motor state of the patient into 2 categories that is Off and Dyskinesia. A sample of spirals drawn by HE subjects was randomly selected and used in subsequent analysis. Methods: The raw spiral data, consisting of stylus position and timestamp, were processed using time series analysis techniques like discrete wavelet transform, approximate entropy and dynamic time warping in order to extract 13 quantitative measures for representing meaningful motor impairment information. A principal component analysis (PCA) was used to reduce the dimensions of the quantitative measures into 4 principal components (PC). In order to classify the motor states into 3 categories that is Off, HE and dyskinesia, a logistic regression model was used as a classifier to map the 4 PCs to the corresponding clinically assigned motor state categories. A stratified 10-fold cross-validation (also known as rotation estimation) was applied to assess the generalization ability of the logistic regression classifier to future independent data sets. To investigate mean differences of the 4 PCs across the three categories, a one-way ANOVA test followed by Tukey multiple comparisons was used. Results: The agreements between computed and clinician ratings were very good with a weighted area under the receiver operating characteristic curve (AUC) coefficient of 0.91. The mean PC scores were different across the three motor state categories, only at different levels. The first 2 PCs were good at discriminating between the motor states whereas the PC3 was good at discriminating between HE subjects and PD patients. The mean scores of PC4 showed a trend across the three states but without significant differences. The Spearman’s rank correlations between the first 2 PCs and clinically assessed motor impairments were as follows: drawing speed (PC1, 0.34; PC2, 0.83), irregularity (PC1, 0.17; PC2, 0.17), and hesitation (PC1, 0.27; PC2, 0.77). Conclusions: These findings suggest that spirography-based objective measures are valid measures of spatial- and time-dependent deficits and can be used to distinguish drug-related motor dysfunctions between Off and dyskinesia in PD. These measures can be potentially useful during clinical evaluation of individualized drug-related complications such as over- and under-medications thus maximizing the amount of time the patients spend in the On state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective To design, develop and set up a web-based system for enabling graphical visualization of upper limb motor performance (ULMP) of Parkinson’s disease (PD) patients to clinicians. Background Sixty-five patients diagnosed with advanced PD have used a test battery, implemented in a touch-screen handheld computer, in their home environment settings over the course of a 3-year clinical study. The test items consisted of objective measures of ULMP through a set of upper limb motor tests (finger to tapping and spiral drawings). For the tapping tests, patients were asked to perform alternate tapping of two buttons as fast and accurate as possible, first using the right hand and then the left hand. The test duration was 20 seconds. For the spiral drawing test, patients traced a pre-drawn Archimedes spiral using the dominant hand, and the test was repeated 3 times per test occasion. In total, the study database consisted of symptom assessments during 10079 test occasions. Methods Visualization of ULMP The web-based system is used by two neurologists for assessing the performance of PD patients during motor tests collected over the course of the said study. The system employs animations, scatter plots and time series graphs to visualize the ULMP of patients to the neurologists. The performance during spiral tests is depicted by animating the three spiral drawings, allowing the neurologists to observe real-time accelerations or hesitations and sharp changes during the actual drawing process. The tapping performance is visualized by displaying different types of graphs. Information presented included distribution of taps over the two buttons, horizontal tap distance vs. time, vertical tap distance vs. time, and tapping reaction time over the test length. Assessments Different scales are utilized by the neurologists to assess the observed impairments. For the spiral drawing performance, the neurologists rated firstly the ‘impairment’ using a 0 (no impairment) – 10 (extremely severe) scale, secondly three kinematic properties: ‘drawing speed’, ‘irregularity’ and ‘hesitation’ using a 0 (normal) – 4 (extremely severe) scale, and thirdly the probable ‘cause’ for the said impairment using 3 choices including Tremor, Bradykinesia/Rigidity and Dyskinesia. For the tapping performance, a 0 (normal) – 4 (extremely severe) scale is used for first rating four tapping properties: ‘tapping speed’, ‘accuracy’, ‘fatigue’, ‘arrhythmia’, and then the ‘global tapping severity’ (GTS). To achieve a common basis for assessment, initially one neurologist (DN) performed preliminary ratings by browsing through the database to collect and rate at least 20 samples of each GTS level and at least 33 samples of each ‘cause’ category. These preliminary ratings were then observed by the two neurologists (DN and PG) to be used as templates for rating of tests afterwards. In another track, the system randomly selected one test occasion per patient and visualized its items, that is tapping and spiral drawings, to the two neurologists. Statistical methods Inter-rater agreements were assessed using weighted Kappa coefficient. The internal consistency of properties of tapping and spiral drawing tests were assessed using Cronbach’s α test. One-way ANOVA test followed by Tukey multiple comparisons test was used to test if mean scores of properties of tapping and spiral drawing tests were different among GTS and ‘cause’ categories, respectively. Results When rating tapping graphs, inter-rater agreements (Kappa) were as follows: GTS (0.61), ‘tapping speed’ (0.89), ‘accuracy’ (0.66), ‘fatigue’ (0.57) and ‘arrhythmia’ (0.33). The poor inter-rater agreement when assessing “arrhythmia” may be as a result of observation of different things in the graphs, among the two raters. When rating animated spirals, both raters had very good agreement when assessing severity of spiral drawings, that is, ‘impairment’ (0.85) and irregularity (0.72). However, there were poor agreements between the two raters when assessing ‘cause’ (0.38) and time-information properties like ‘drawing speed’ (0.25) and ‘hesitation’ (0.21). Tapping properties, that is ‘tapping speed’, ‘accuracy’, ‘fatigue’ and ‘arrhythmia’ had satisfactory internal consistency with a Cronbach’s α coefficient of 0.77. In general, the trends of mean scores of tapping properties worsened with increasing levels of GTS. The mean scores of the four properties were significantly different to each other, only at different levels. In contrast from tapping properties, kinematic properties of spirals, that is ‘drawing speed’, ‘irregularity’ and ‘hesitation’ had a questionable consistency among them with a coefficient of 0.66. Bradykinetic spirals were associated with more impaired speed (mean = 83.7 % worse, P < 0.001) and hesitation (mean = 77.8% worse, P < 0.001), compared to dyskinetic spirals. Both these ‘cause’ categories had similar mean scores of ‘impairment’ and ‘irregularity’. Conclusions In contrast from current approaches used in clinical setting for the assessment of PD symptoms, this system enables clinicians to animate easily and realistically the ULMP of patients who at the same time are at their homes. Dynamic access of visualized motor tests may also be useful when observing and evaluating therapy-related complications such as under- and over-medications. In future, we foresee to utilize these manual ratings for developing and validating computer methods for automating the process of assessing ULMP of PD patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: British government policy for older people focuses on a vision of active ageing and independent living. In the face of diminishing personal capacities, the use of appropriate home-based technology (HBT) devices could potentially meet a wide range of needs and consequently improve many aspects of older people's quality of life such as physical health, psychosocial well-being, social relationships, and their physical or living environment. This study aimed to examine the use of HBT devices and the correlation between use of such devices and quality of life among older people living in extra-care housing (ECH).  Methods: A structured questionnaire was administered for this study. Using purposive sampling 160 older people living in extra-care housing schemes were selected from 23 schemes in England. A face-to-face interview was conducted in each participant's living unit. In order to measure quality of life, the SEIQoL-Adapted and CASP-19 were used.  Results: Although most basic appliances and emergency call systems were used in the living units, communally provided facilities such as personal computers, washing machines, and assisted bathing equipment in the schemes were not well utilised. Multiple regression analysis adjusted for confounders including age, sex, marital status, living arrangement and mobility use indicated a coefficient of 1.17 with 95% CI (0.05, 2.29) and p = 0.04 [SEIQoL-Adapted] and 2.83 with 95% CI (1.17, 4.50) and p = 0.001 [CASP-19].  Conclusions: The findings of the present study will be value to those who are developing new form of specialised housing for older people with functional limitations and, in particular, guiding investments in technological aids. The results of the present study also indicate that the home is an essential site for developing residential technologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: To develop a method for objective assessment of fine motor timing variability in Parkinson’s disease (PD) patients, using digital spiral data gathered by a touch screen device. BACKGROUND: A retrospective analysis was conducted on data from 105 subjects including65 patients with advanced PD (group A), 15 intermediate patients experiencing motor fluctuations (group I), 15 early stage patients (group S), and 10 healthy elderly subjects (HE) were examined. The subjects were asked to perform repeated upper limb motor tasks by tracing a pre-drawn Archimedes spiral as shown on the screen of the device. The spiral tracing test was performed using an ergonomic pen stylus, using dominant hand. The test was repeated three times per test occasion and the subjects were instructed to complete it within 10 seconds. Digital spiral data including stylus position (x-ycoordinates) and timestamps (milliseconds) were collected and used in subsequent analysis. The total number of observations with the test battery were as follows: Swedish group (n=10079), Italian I group (n=822), Italian S group (n = 811), and HE (n=299). METHODS: The raw spiral data were processed with three data processing methods. To quantify motor timing variability during spiral drawing tasks Approximate Entropy (APEN) method was applied on digitized spiral data. APEN is designed to capture the amount of irregularity or complexity in time series. APEN requires determination of two parameters, namely, the window size and similarity measure. In our work and after experimentation, window size was set to 4 and similarity measure to 0.2 (20% of the standard deviation of the time series). The final score obtained by APEN was normalized by total drawing completion time and used in subsequent analysis. The score generated by this method is hence on denoted APEN. In addition, two more methods were applied on digital spiral data and their scores were used in subsequent analysis. The first method was based on Digital Wavelet Transform and Principal Component Analysis and generated a score representing spiral drawing impairment. The score generated by this method is hence on denoted WAV. The second method was based on standard deviation of frequency filtered drawing velocity. The score generated by this method is hence on denoted SDDV. Linear mixed-effects (LME) models were used to evaluate mean differences of the spiral scores of the three methods across the four subject groups. Test-retest reliability of the three scores was assessed after taking mean of the three possible correlations (Spearman’s rank coefficients) between the three test trials. Internal consistency of the methods was assessed by calculating correlations between their scores. RESULTS: When comparing mean spiral scores between the four subject groups, the APEN scores were different between HE subjects and three patient groups (P=0.626 for S group with 9.9% mean value difference, P=0.089 for I group with 30.2%, and P=0.0019 for A group with 44.1%). However, there were no significant differences in mean scores of the other two methods, except for the WAV between the HE and A groups (P<0.001). WAV and SDDV were highly and significantly correlated to each other with a coefficient of 0.69. However, APEN was not correlated to neither WAV nor SDDV with coefficients of 0.11 and 0.12, respectively. Test-retest reliability coefficients of the three scores were as follows: APEN (0.9), WAV(0.83) and SD-DV (0.55). CONCLUSIONS: The results show that the digital spiral analysis-based objective APEN measure is able to significantly differentiate the healthy subjects from patients at advanced level. In contrast to the other two methods (WAV and SDDV) that are designed to quantify dyskinesias (over-medications), this method can be useful for characterizing Off symptoms in PD. The APEN was not correlated to none of the other two methods indicating that it measures a different construct of upper limb motor function in PD patients than WAV and SDDV. The APEN also had a better test-retest reliability indicating that it is more stable and consistent over time than WAV and SDDV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The demand for cooling and air-conditioning of building is increasingly ever growing. This increase is mostly due to population and economic growth in developing countries, and also desire for a higher quality of thermal comfort. Increase in the use of conventional cooling systems results in larger carbon footprint and more greenhouse gases considering their higher electricity consumption, and it occasionally creates peaks in electricity demand from power supply grid. Solar energy as a renewable energy source is an alternative to drive the cooling machines since the cooling load is generally high when solar radiation is high. This thesis examines the performance of PV/T solar collector manufactured by Solarus company in a solar cooling system for an office building in Dubai, New Delhi, Los Angeles and Cape Town. The study is carried out by analyzing climate data and the requirements for thermal comfort in office buildings. Cooling systems strongly depend on weather conditions and local climate. Cooling load of buildings depend on many parameters such as ambient temperature, indoor comfort temperature, solar gain to the building and internal gains including; number of occupant and electrical devices. The simulations were carried out by selecting a suitable thermally driven chiller and modeling it with PV/T solar collector in Polysun software. Fractional primary energy saving and solar fraction were introduced as key figures of the project to evaluate the performance of cooling system. Several parametric studies and simulations were determined according to PV/T aperture area and hot water storage tank volume. The fractional primary energy saving analysis revealed that thermally driven chillers, particularly adsorption chillers are not suitable to be utilizing in small size of solar cooling systems in hot and tropic climates such as Dubai and New Delhi. Adsorption chillers require more thermal energy to meet the cooling load in hot and dry climates. The adsorption chillers operate in their full capacity and in higher coefficient of performance when they run in a moderate climate since they can properly reject the exhaust heat. The simulation results also indicated that PV/T solar collector have higher efficiency in warmer climates, however it requires a larger size of PV/T collectors to supply the thermally driven chillers for providing cooling in hot climates. Therefore using an electrical chiller as backup gives much better results in terms of primary energy savings, since PV/T electrical production also can be used for backup electrical chiller in a net metering mechanism.