5 resultados para chipping
em Dalarna University College Electronic Archive
Resumo:
SammanfattningHögskolan Dalarna har i samarbete med Skogsägarna Mellanskog, Naturbränsle i Mellan¬sverige AB och GDE-Net genomfört studier på en ny metod för uttag av skogsbränsle från slutavverkningar. Metoden går ut på att timmer tas ut som enda rundvirkessortiment. Resten av trädet, samt klenare träd som inte håller timmerdimension, tas ut som ett bränslesortiment. Metoden har jämförts med en konventionell slutavverkning med uttag av timmer, massaved och GROT-flis.Enligt genomförda försök skulle en avverkning enligt den nya metoden (långa toppar) ge ett högre drivningsnetto och drygt dubbelt så mycket bränsleflis som en konventionell avverk¬ning. En anledning till det högre drivningsnettot är att kostnaden för flisning blir lägre än vid flisning av GROT och att flisen betalas bättre än GROT-flis. Resultaten är beroende av de faktiska beståndsförutsättningarna och gällande prisrelationer mellan massaved och bränsle¬flis.Faktorer som har en positiv inverkan på drivningsnettot vid uttag av ”långa toppar” är t.ex. stora uttagsvolymer och korta terrängtransportavstånd samt bestånd med en hög andel virke av låg kvalitet eller udda sortiment som betalas dåligt på rundvirkesmarknaden.SummaryIn Sweden forest energy from final felling is traditionally harvested as logging residues after harvesting of timber (saw logs) and pulpwood, but depending on the market situation other methods with higher yield of forest energy might be of interest. Dalarna University has study a new method called “Undelimbed long tops” where only saw timber was taken out as an industrial assortment. The rest of the trees and smaller trees that don’t hold timber dimensions was left intact on the clear-felled area and been chipped later on. The study was done in different stands with some different conditions. The results have been compared with the traditional method for final felling. The surplus (forest owners net income) was higher in almost all stands when the method with “undelimbed long tops” was used, compared to the traditional method for taking out forest energy, and the volume of chips was more than doubled. A reason for the higher income from long tops is that the costs for chipping is lower and the prize of chips is higher compared to chips from logging residues. Other reason is that forest owners will not be paid for wasted pulpwood, but will be fully paid for the chips from such pulpwood. Factors that will have a positive influence on the ULT-method are for example large logging volumes and short distance between the logging area and the landing, different kinds of price reductions on pulpwood and large volumes of rotten wood or low paid industrial assortments.
Resumo:
Cemented carbide is today the most frequently used drawing die material in steel wire drawing applications. This is mainly due to the possibility to obtain a broad combination of hardness and toughness thus meeting the requirements concerning strength, crack resistance and wear resistance set by the wire drawing process. However, the increasing cost of cemented carbide in combination with the possibility to increase the wear resistance of steel through the deposition of wear resistant CVD and PVD coatings have enhanced the interest to replace cemented carbide drawing dies with CVD and PVD coated steel wire drawing dies. In the present study, the possibility to replace cemented carbide wire drawing dies with CVD and PVD coated steel drawing dies have been investigated by tribological characterisation, i.e. pin-on-disc and scratch testing, in combination with post-test observations of the tribo surfaces using scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D surface profilometry. Based on the results obtained, CVD and PVD coatings aimed to provide improved tribological performance of steel wire drawing dies should display a smooth surface topography, a high wear resistance, a high fracture toughness (i.e. a high cracking and chipping resistance) and intrinsic low friction properties in contact with the wire material. Also, the steel substrate used must display a sufficient load carrying capacity and resistance to thermal softening. Of the CVD and PVD coatings evaluated in the tribological tests, a CVD TiC and a PVD CrC/C coating displayed the most promising results.
Resumo:
The surface failure characteristics of different work roll materials, i.e. High Speed Steel, High Chromium Iron and Indefinite Chill Iron, used in the finishing stands of a hot strip mill have been investigated using stereo microscopy, 3D optical profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results show that the surface failure mechanisms of work rolls for hot rolling are very complex, involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. Despite the differences in chemical composition and microstructure, the tribological response of the different work roll materials was found to be strongly dependent on the material microstructure and especially the presence and distribution of microstructural constituents, such as the different carbide phases and graphite (in the case of Indefinite Chill Iron). Cracking and chipping of the work roll surfaces, both having a negative impact on work roll wear, are strongly influenced by the presence of carbides, carbide networks and graphite in the work roll surface. Consequently, the amount of carbide forming elements as well as the manufacturing process must be controlled in order to obtain an optimised microstructure and a predictable wear rate.
Resumo:
A new test method based on multipass scratch testing has been developed for evaluating the mechanical and tribological properties of thin, hard coatings. The proposed test method uses a pin-on-disc tribometer and during testing a Rockwell C diamond stylus is used as the “pin” and loaded against the rotating coated sample. The influence of normal load on the number of cycles to coating damage is investigated and the resulting coating damage mechanisms are evaluated by posttest scanning electron microscopy. The present study presents the test method by evaluating the performance of Ti0.86Si0.14N, Ti0.34Al0.66N, and (Al0.7Cr0.3)2O3 coatings deposited by cathodic arc evaporation on cemented carbide inserts. The results show that the test method is quick, simple, and reproducible and can preferably be used to obtain relevant data concerning the fatigue, wear, chipping, and spalling characteristics of different coating-substrate composites. The test method can be used as a virtually nondestructive test and, for example, be used to evaluate the fatigue and wear resistance as well as the cohesive and adhesive interfacial strength of coated cemented carbide inserts prior to cutting tests.
Resumo:
This licentiate thesis has the main focus on evaluation of the wear of coated and uncoated polycrystalline cubic boron nitride cutting tool used in cutting operations against hardened steel. And to exam the surface finish and integrity of the work material used. Harder work material, higher cutting speed and cost reductions result in the development of harder and more wear resistance cutting tools. Although PCBN cutting tools have been used in over 30 years, little work have been done on PVD coated PCBN cutting tools. Therefore hard turning and hard milling experiments with PVD coated and uncoated cutting tools have been performed and evaluated. The coatings used in the present study are TiSiN and TiAlN. The wear scar and surface integrity have been examined with help of several different characterization techniques, for example scanning electron microscopy and Auger electron spectroscopy. The results showed that the PCBN cutting tools used displayed crater wear, flank wear and edge micro chipping. While the influence of the coating on the crater and flank wear was very small and the coating showed a high tendency to spalling. Scratch testing of coated PCBN showed that, the TiAlN coating resulted in major adhesive fractures. This displays the importance of understanding the effect of different types of lapping/grinding processes in the pre-treatment of hard and super hard substrate materials and the amount and type of damage that they can create. For the cutting tools used in turning, patches of a adhered layer, mainly consisting of FexOy were shown at both the crater and flank. And for the cutting tools used in milling a tribofilm consisting of SixOy covered the crater. A combination of tribochemical reactions, adhesive wear and mild abrasive wear is believed to control the flank and crater wear of the PCBN cutting tools. On a microscopic scale the difference phases of the PCBN cutting tool used in turning showed different wear characteristics. The machined surface of the work material showed a smooth surface with a Ra-value in the range of 100-200 nm for the turned surface and 100-150 nm for the milled surface. With increasing crater and flank wear in combination with edge chipping the machined surface becomes rougher and showed a higher Ra-value. For the cutting tools used in milling the tendency to micro edge chipping was significant higher when milling the tools steels showing a higher hard phase content and a lower heat conductivity resulting in higher mechanical and thermal stresses at the cutting edge.