11 resultados para bigdata, data stream processing, dsp, apache storm, cyber security

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internet of Things är ett samlingsbegrepp för den utveckling som innebär att olika typer av enheter kan förses med sensorer och datachip som är uppkopplade mot internet. En ökad mängd data innebär en ökad förfrågan på lösningar som kan lagra, spåra, analysera och bearbeta data. Ett sätt att möta denna förfrågan är att använda sig av molnbaserade realtidsanalystjänster. Multi-tenant och single-tenant är två typer av arkitekturer för molnbaserade realtidsanalystjänster som kan användas för att lösa problemen med hanteringen av de ökade datamängderna. Dessa arkitekturer skiljer sig åt när det gäller komplexitet i utvecklingen. I detta arbete representerar Azure Stream Analytics en multi-tenant arkitektur och HDInsight/Storm representerar en single-tenant arkitektur. För att kunna göra en jämförelse av molnbaserade realtidsanalystjänster med olika arkitekturer, har vi valt att använda oss av användbarhetskriterierna: effektivitet, ändamålsenlighet och användarnöjdhet. Vi kom fram till att vi ville ha svar på följande frågor relaterade till ovannämnda tre användbarhetskriterier: • Vilka likheter och skillnader kan vi se i utvecklingstider? • Kan vi identifiera skillnader i funktionalitet? • Hur upplever utvecklare de olika analystjänsterna? Vi har använt en design and creation strategi för att utveckla två Proof of Concept prototyper och samlat in data genom att använda flera datainsamlingsmetoder. Proof of Concept prototyperna inkluderade två artefakter, en för Azure Stream Analytics och en för HDInsight/Storm. Vi utvärderade dessa genom att utföra fem olika scenarier som var för sig hade 2-5 delmål. Vi simulerade strömmande data genom att låta en applikation kontinuerligt slumpa fram data som vi analyserade med hjälp av de två realtidsanalystjänsterna. Vi har använt oss av observationer för att dokumentera hur vi arbetade med utvecklingen av analystjänsterna samt för att mäta utvecklingstider och identifiera skillnader i funktionalitet. Vi har även använt oss av frågeformulär för att ta reda på vad användare tyckte om analystjänsterna. Vi kom fram till att Azure Stream Analytics initialt var mer användbart än HDInsight/Storm men att skillnaderna minskade efter hand. Azure Stream Analytics var lättare att arbeta med vid simplare analyser medan HDInsight/Storm hade ett bredare val av funktionalitet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intelligent Transportation System (ITS) is a system that builds a safe, effective and integrated transportation environment based on advanced technologies. Road signs detection and recognition is an important part of ITS, which offer ways to collect the real time traffic data for processing at a central facility.This project is to implement a road sign recognition model based on AI and image analysis technologies, which applies a machine learning method, Support Vector Machines, to recognize road signs. We focus on recognizing seven categories of road sign shapes and five categories of speed limit signs. Two kinds of features, binary image and Zernike moments, are used for representing the data to the SVM for training and test. We compared and analyzed the performances of SVM recognition model using different features and different kernels. Moreover, the performances using different recognition models, SVM and Fuzzy ARTMAP, are observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GPS technology has been embedded into portable, low-cost electronic devices nowadays to track the movements of mobile objects. This implication has greatly impacted the transportation field by creating a novel and rich source of traffic data on the road network. Although the promise offered by GPS devices to overcome problems like underreporting, respondent fatigue, inaccuracies and other human errors in data collection is significant; the technology is still relatively new that it raises many issues for potential users. These issues tend to revolve around the following areas: reliability, data processing and the related application. This thesis aims to study the GPS tracking form the methodological, technical and practical aspects. It first evaluates the reliability of GPS based traffic data based on data from an experiment containing three different traffic modes (car, bike and bus) traveling along the road network. It then outline the general procedure for processing GPS tracking data and discuss related issues that are uncovered by using real-world GPS tracking data of 316 cars. Thirdly, it investigates the influence of road network density in finding optimal location for enhancing travel efficiency and decreasing travel cost. The results show that the geographical positioning is reliable. Velocity is slightly underestimated, whereas altitude measurements are unreliable.Post processing techniques with auxiliary information is found necessary and important when solving the inaccuracy of GPS data. The densities of the road network influence the finding of optimal locations. The influence will stabilize at a certain level and do not deteriorate when the node density is higher.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The advancement of GPS technology enables GPS devices not only to be used as orientation and navigation tools, but also to track travelled routes. GPS tracking data provides essential information for a broad range of urban planning applications such as transportation routing and planning, traffic management and environmental control. This paper describes on processing the data that was collected by tracking the cars of 316 volunteers over a seven-week period. The detailed information is extracted. The processed data is further connected to the underlying road network by means of maps. Geographical maps are applied to check how the car-movements match the road network. The maps capture the complexity of the car-movements in the urban area. The results show that 90% of the trips on the plane match the road network within a tolerance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The advancement of GPS technology has made it possible to use GPS devices as orientation and navigation tools, but also as tools to track spatiotemporal information. GPS tracking data can be broadly applied in location-based services, such as spatial distribution of the economy, transportation routing and planning, traffic management and environmental control. Therefore, knowledge of how to process the data from a standard GPS device is crucial for further use. Previous studies have considered various issues of the data processing at the time. This paper, however, aims to outline a general procedure for processing GPS tracking data. The procedure is illustrated step-by-step by the processing of real-world GPS data of car movements in Borlänge in the centre of Sweden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrated solar power systems are expected to be sited in desert locations where the direct normal irradiation is above 1800 kWh/m2.year. These systems include large solar collector assemblies, which account for a significant share of the investment cost. Solarreflectors are the main components of these solar collector assemblies and dust/sand storms may affect their reflectance properties, either by soiling or by surface abrasion. While soiling can be reverted by cleaning, surface abrasion is a non reversible degradation.The aim of this project was to study the accelerated aging of second surface silvered thickglass solar reflectors under simulated sandstorm conditions and develop a multi-parametric model which relates the specular reflectance loss to dust/sand storm parameters: wind velocity, dust concentration and time of exposure. This project focused on the degradation caused by surface abrasion.Sandstorm conditions were simulated in a prototype environmental test chamber. Material samples (6cm x 6cm) were exposed to Arizona coarse test dust. The dust stream impactedthese material samples at a perpendicular angle. Both wind velocity and dust concentrationwere maintained at a stable level for each accelerated aging test. The total exposure time in the test chamber was limited to 1 hour. Each accelerated aging test was interrupted every 4 minutes to measure the specular reflectance of the material sample after cleaning.The accelerated aging test campaign had to be aborted prematurely due to a contamination of the dust concentration sensor. A robust multi-parametric degradation model could thus not be derived. The experimental data showed that the specular reflectance loss decreasedeither linearly or exponentially with exposure time, so that a degradation rate could be defined as a single modeling parameter. A correlation should be derived to relate this degradation rate to control parameters such as wind velocity and dust/sand concentration.The sandstorm chamber design would have to be updated before performing further accelerated aging test campaigns. The design upgrade should improve both the reliability of the test equipment and the repeatability of accelerated aging tests. An outdoor exposure test campaign should be launched in deserts to learn more about the intensity, frequencyand duration of dust/sand storms. This campaign would also serve to correlate the results of outdoor exposure tests with accelerated exposure tests in order to develop a robust service lifetime prediction model for different types of solar reflector materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The project introduces an application using computer vision for Hand gesture recognition. A camera records a live video stream, from which a snapshot is taken with the help of interface. The system is trained for each type of count hand gestures (one, two, three, four, and five) at least once. After that a test gesture is given to it and the system tries to recognize it.A research was carried out on a number of algorithms that could best differentiate a hand gesture. It was found that the diagonal sum algorithm gave the highest accuracy rate. In the preprocessing phase, a self-developed algorithm removes the background of each training gesture. After that the image is converted into a binary image and the sums of all diagonal elements of the picture are taken. This sum helps us in differentiating and classifying different hand gestures.Previous systems have used data gloves or markers for input in the system. I have no such constraints for using the system. The user can give hand gestures in view of the camera naturally. A completely robust hand gesture recognition system is still under heavy research and development; the implemented system serves as an extendible foundation for future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earlier research shows that breast augmentation is positively correlated with positive psychological states. The aim of this study was to explore the shared values, feelings, and thoughts within the culture of breast enlargement among women visiting Internet-based forums when considering and/or undergoing esthetic plastic surgery. The study used a netnographic method for gathering and analyzing data. The findings show that the women used the Internet forum to provide emotional support to other women. Through electronic postings, they cared for and nursed each others’ anxiety and feelings throughout the whole process. Apart from the process, another central issue was that the women's relationships were frequently discussed; specifically their relationship to themselves, their environment, and with the surgeons. The findings suggest that Internet forums represent a channel through which posters can share values, feelings, and thoughts from the position of an agent of action as well as from a position as the object of action. These dual positions and the medium endow the women with a virtual nursing competence that would otherwise be unavailable. By introducing the concept of torrenting as a means of sharing important self-care information, the authors provide a concept that can be further explored in relation to post modern self-care strategies within contemporary nursing theories and practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic.  The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate measurement of a vehicle’s velocity is an essential feature in adaptive vehicle activated sign systems. Since the velocities of the vehicles are acquired from a continuous wave Doppler radar, the data collection becomes challenging. Data accuracy is sensitive to the calibration of the radar on the road. However, clear methodologies for in-field calibration have not been carefully established. The signs are often installed by subjective judgment which results in measurement errors. This paper develops a calibration method based on mining the data collected and matching individual vehicles travelling between two radars. The data was cleaned and prepared in two ways: cleaning and reconstructing. The results showed that the proposed correction factor derived from the cleaned data corresponded well with the experimental factor done on site. In addition, this proposed factor showed superior performance to the one derived from the reconstructed data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delineation of commuting regions has always been based on statistical units, often municipalities or wards. However, using these units has certain disadvantages as their land areas differ considerably. Much information is lost in the larger spatial base units and distortions in self-containment values, the main criterion in rule-based delineation procedures, occur. Alternatively, one can start from relatively small standard size units such as hexagons. In this way, much greater detail in spatial patterns is obtained. In this paper, regions are built by means of intrazonal maximization (Intramax) on the basis of hexagons. The use of geoprocessing tools, specifically developed for the processing ofcommuting data, speeds up processing time considerably. The results of the Intramax analysis are evaluated with travel-to-work area constraints, and comparisons are made with commuting fields, accessibility to employment, commuting flow density and network commuting flow size. From selected steps in the regionalization process, a hierarchy of nested commuting regions emerges, revealing the complexity of commuting patterns.