5 resultados para asymptotic suboptimality

em Dalarna University College Electronic Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nested by linear cointegration first provided in Granger (1981), the definition of nonlinear cointegration is presented in this paper. Sequentially, a nonlinear cointegrated economic system is introduced. What we mainly study is testing no nonlinear cointegration against nonlinear cointegration by residual-based test, which is ready for detecting stochastic trend in nonlinear autoregression models. We construct cointegrating regression along with smooth transition components from smooth transition autoregression model. Some properties are analyzed and discussed during the estimation procedure for cointegrating regression, including description of transition variable. Autoregression of order one is considered as the model of estimated residuals for residual-based test, from which the teststatistic is obtained. Critical values and asymptotic distribution of the test statistic that we request for different cointegrating regressions with different sample sizes are derived based on Monte Carlo simulation. The proposed theoretical methods and models are illustrated by an empirical example, comparing the results with linear cointegration application in Hamilton (1994). It is concluded that there exists nonlinear cointegration in our system in the final results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies a special class of vector smooth-transition autoregressive (VSTAR) models that contains common nonlinear features (CNFs), for which we proposed a triangular representation and developed a procedure of testing CNFs in a VSTAR model. We first test a unit root against a stable STAR process for each individual time series and then examine whether CNFs exist in the system by Lagrange Multiplier (LM) test if unit root is rejected in the first step. The LM test has standard Chi-squared asymptotic distribution. The critical values of our unit root tests and small-sample properties of the F form of our LM test are studied by Monte Carlo simulations. We illustrate how to test and model CNFs using the monthly growth of consumption and income data of United States (1985:1 to 2011:11).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies a smooth-transition (ST) type cointegration. The proposed ST cointegration allows for regime switching structure in a cointegrated system. It nests the linear cointegration developed by Engle and Granger (1987) and the threshold cointegration studied by Balke and Fomby (1997). We develop F-type tests to examine linear cointegration against ST cointegration in ST-type cointegrating regression models with or without time trends. The null asymptotic distributions of the tests are derived with stationary transition variables in ST cointegrating regression models. And it is shown that our tests have nonstandard limiting distributions expressed in terms of standard Brownian motion when regressors are pure random walks, while have standard asymptotic distributions when regressors contain random walks with nonzero drift. Finite-sample distributions of those tests are studied by Monto Carlo simulations. The small-sample performance of the tests states that our F-type tests have a better power when the system contains ST cointegration than when the system is linearly cointegrated. An empirical example for the purchasing power parity (PPP) data (monthly US dollar, Italy lira and dollar-lira exchange rate from 1973:01 to 1989:10) is illustrated by applying the testing procedures in this paper. It is found that there is no linear cointegration in the system, but there exits the ST-type cointegration in the PPP data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present an analysis of how matter waves, guided as propagating modes in potential structures, are split under adiabatic conditions. The description is formulated in terms of localized states obtained through a unitary transformation acting on the mode functions. The mathematical framework results in coupled propagation equations that are decoupled in the asymptotic regions as well before as after the split. The resulting states have the advantage of describing propagation in situations, for instance matter-wave interferometers, where local perturbations make the transverse modes of the guiding potential unsuitable as a basis. The different regimes of validity of adiabatic propagation schemes based on localized versus delocalized basis states are also outlined. Nontrivial dynamics for superposition states propagating through split potential structures is investigated through numerical simulations. For superposition states the influence of longitudinal wave-packet extension on the localization is investigated and shown to be accurately described in quantitative terms using the adiabatic formulations presented here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper generalizes the HEGY-type test to detect seasonal unit roots in data at any frequency, based on the seasonal unit root tests in univariate time series by Hylleberg, Engle, Granger and Yoo (1990). We introduce the seasonal unit roots at first, and then derive the mechanism of the HEGY-type test for data with any frequency. Thereafter we provide the asymptotic distributions of our test statistics when different test regressions are employed. We find that the F-statistics for testing conjugation unit roots have the same asymptotic distributions. Then we compute the finite-sample and asymptotic critical values for daily and hourly data by a Monte Carlo method. The power and size properties of our test for hourly data is investigated, and we find that including lag augmentations in auxiliary regression without lag elimination have the smallest size distortion and tests with seasonal dummies included in auxiliary regression have more power than the tests without seasonal dummies. At last we apply the our test to hourly wind power production data in Sweden and shows there are no seasonal unit roots in the series.