3 resultados para alignment-free methods

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Constructive alignment (CA) is a pedagogical approach that emphasizes the alignment between the intended learning outcomes (ILOs), teaching and learning activities (TLAs) and assessment tasks (ATs) as well as creation of a teaching/learning environment where students will be able to actively create their knowledge. Objectives: This paper aims at investigating the extent of constructively-aligned courses in Computer Engineering and Informatics department at Dalarna University, Sweden. This study is based on empirical observations of teacher’s perceptions of implementation of CA in their courses. Methods: Ten teachers (5 from each department) were asked to fill a paper-based questionnaire, which included a number of questions related to issues of implementing CA in courses. Results: Responses to the items of the questionnaire were mixed. Teachers clearly state the ILOs in their courses and try to align the TLAs and ATs to the ILOs. Computer Engineering teachers do not explicitly communicate the ILOs to the students as compared to Informatics teachers. In addition, Computer Engineering teachers stated that their students are less active in learning activities as compared to Informatics teachers. When asked about their subjective ratings of teaching methods all teachers stated that their current teaching is teacher-centered but they try to shift the focus of activity from them to the students. Conclusions: From teachers’ perspectives, the courses are partially constructively-aligned. Their courses are “aligned”, i.e. ILOs, TLAs and ATs are aligned to each other but they are not “constructive” since, according to them, there was a low student engagement in learning activities, especially in Computer Engineering department.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In light of the multifactorial etiology of fall-related hip fracture, knowledge of fall circumstances may be especially valuable when placed in the context of the health of the person who falls. We aimed to investigate the circumstances surrounding fall-related hip fractures and to describe fall circumstances in relation to participants' health and functional characteristics. Methods: The fall circumstances of 125 individuals (age >= 50 years) with hip fracture were investigated using semi-structured interviews. Data concerning participants' health (comorbidities and medications) and function (self-reported performance of mobility, balance, personal activities of daily living and physical activity, previous falls and hand grip strength) were collected via medical records, questionnaires and dynamometry. Using a mixed methods design, both data sets were analysed separately and then merged in order to provide a comprehensive description of fall events and identify eventual patterns in the data. Results: Fall circumstances were described as i) Activity at the time of the fall: Positional change (n = 24, 19%); Standing (n = 16, 13%); Walking (n = 71, 57%); Balance challenging (n = 14, 11%) and ii) Nature of the fall: Environmental (n = 32, 26%); Physiological (n = 35, 28%); Activity-related indoor (n = 8, 6%) and outdoor (n = 8, 6%); Trips and slips on snow (n = 20, 16%) and in snow-free conditions (n = 12, 10%) and Unknown (n = 10, 8%). We observed the following patterns regarding fall circumstances and participants' health: those who fell i) during positional change had the poorest functional status; ii) due to environmental reasons (indoors) had moderate physical function, but high levels of comorbidity and fall risk increasing medications; iii) in snow-free environments (outdoors) appeared to have a poorer health and functional status than other outdoor groups. Conclusions: Our findings indicate that patterns exist in relation to the falls circumstances and health characteristics of people with hip fracture which build upon that previously reported. These patterns, when verified, can provide useful information as to the ways in which fall prevention strategies can be tailored to individuals of varying levels of health and function who are at risk for falls and hip fracture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shearing is the process where sheet metal is mechanically cut between two tools. Various shearing technologies are commonly used in the sheet metal industry, for example, in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material. The constant development of sheet metals toward higher strength and formability leads to increased forces on the shearing equipment and tools. Shearing of new sheet materials imply new suitable shearing parameters. Investigations of the shearing parameters through live tests in the production are expensive and separate experiments are time consuming and requires specialized equipment. Studies involving a large number of parameters and coupled effects are therefore preferably performed by finite element based simulations. Accurate experimental data is still a prerequisite to validate such simulations. There is, however, a shortage of accurate experimental data to validate such simulations. In industrial shearing processes, measured forces are always larger than the actual forces acting on the sheet, due to friction losses. Shearing also generates a force that attempts to separate the two tools with changed shearing conditions through increased clearance between the tools as result. Tool clearance is also the most common shearing parameter to adjust, depending on material grade and sheet thickness, to moderate the required force and to control the final sheared edge geometry. In this work, an experimental procedure that provides a stable tool clearance together with accurate measurements of tool forces and tool displacements, was designed, built and evaluated. Important shearing parameters and demands on the experimental set-up were identified in a sensitivity analysis performed with finite element simulations under the assumption of plane strain. With respect to large tool clearance stability and accurate force measurements, a symmetric experiment with two simultaneous shears and internal balancing of forces attempting to separate the tools was constructed. Steel sheets of different strength levels were sheared using the above mentioned experimental set-up, with various tool clearances, sheet clamping and rake angles. Results showed that tool penetration before fracture decreased with increased material strength. When one side of the sheet was left unclamped and free to move, the required shearing force decreased but instead the force attempting to separate the two tools increased. Further, the maximum shearing force decreased and the rollover increased with increased tool clearance. Digital image correlation was applied to measure strains on the sheet surface. The obtained strain fields, together with a material model, were used to compute the stress state in the sheet. A comparison, up to crack initiation, of these experimental results with corresponding results from finite element simulations in three dimensions and at a plane strain approximation showed that effective strains on the surface are representative also for the bulk material. A simple model was successfully applied to calculate the tool forces in shearing with angled tools from forces measured with parallel tools. These results suggest that, with respect to tool forces, a plane strain approximation is valid also at angled tools, at least for small rake angles. In general terms, this study provide a stable symmetric experimental set-up with internal balancing of lateral forces, for accurate measurements of tool forces, tool displacements, and sheet deformations, to study the effects of important shearing parameters. The results give further insight to the strain and stress conditions at crack initiation during shearing, and can also be used to validate models of the shearing process.