4 resultados para advanced control technology

em Dalarna University College Electronic Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study reported here is part of a large project for evaluation of the Thermo-Chemical Accumulator (TCA), a technology under development by the Swedish company ClimateWell AB. The studies concentrate on the use of the technology for comfort cooling. This report concentrates on measurements in the laboratory, modelling and system simulation. The TCA is a three-phase absorption heat pump that stores energy in the form of crystallised salt, in this case Lithium Chloride (LiCl) with water being the other substance. The process requires vacuum conditions as with standard absorption chillers using LiBr/water. Measurements were carried out in the laboratories at the Solar Energy Research Center SERC, at Högskolan Dalarna as well as at ClimateWell AB. The measurements at SERC were performed on a prototype version 7:1 and showed that this prototype had several problems resulting in poor and unreliable performance. The main results were that: there was significant corrosion leading to non-condensable gases that in turn caused very poor performance; unwanted crystallisation caused blockages as well as inconsistent behaviour; poor wetting of the heat exchangers resulted in relatively high temperature drops there. A measured thermal COP for cooling of 0.46 was found, which is significantly lower than the theoretical value. These findings resulted in a thorough redesign for the new prototype, called ClimateWell 10 (CW10), which was tested briefly by the authors at ClimateWell. The data collected here was not large, but enough to show that the machine worked consistently with no noticeable vacuum problems. It was also sufficient for identifying the main parameters in a simulation model developed for the TRNSYS simulation environment, but not enough to verify the model properly. This model was shown to be able to simulate the dynamic as well as static performance of the CW10, and was then used in a series of system simulations. A single system model was developed as the basis of the system simulations, consisting of a CW10 machine, 30 m2 flat plate solar collectors with backup boiler and an office with a design cooling load in Stockholm of 50 W/m2, resulting in a 7.5 kW design load for the 150 m2 floor area. Two base cases were defined based on this: one for Stockholm using a dry cooler with design cooling rate of 30 kW; one for Madrid with a cooling tower with design cooling rate of 34 kW. A number of parametric studies were performed based on these two base cases. These showed that the temperature lift is a limiting factor for cooling for higher ambient temperatures and for charging with fixed temperature source such as district heating. The simulated evacuated tube collector performs only marginally better than a good flat plate collector if considering the gross area, the margin being greater for larger solar fractions. For 30 m2 collector a solar faction of 49% and 67% were achieved for the Stockholm and Madrid base cases respectively. The average annual efficiency of the collector in Stockholm (12%) was much lower than that in Madrid (19%). The thermal COP was simulated to be approximately 0.70, but has not been possible to verify with measured data. The annual electrical COP was shown to be very dependent on the cooling load as a large proportion of electrical use is for components that are permanently on. For the cooling loads studied, the annual electrical COP ranged from 2.2 for a 2000 kWh cooling load to 18.0 for a 21000 kWh cooling load. There is however a potential to reduce the electricity consumption in the machine, which would improve these figures significantly. It was shown that a cooling tower is necessary for the Madrid climate, whereas a dry cooler is sufficient for Stockholm although a cooling tower does improve performance. The simulation study was very shallow and has shown a number of areas that are important to study in more depth. One such area is advanced control strategy, which is necessary to mitigate the weakness of the technology (low temperature lift for cooling) and to optimally use its strength (storage).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to investigate how electricallyheated houses can be converted to using wood pellet and solarheating. There are a large number of wood pellet stoves on themarket. Many stoves have a water jacket, which gives anopportunity to distribute the heat to domestic hot water and aradiator heating system. Three typical Swedish houses with electric resistanceheating have been studied. Fourteen different system conceptsusing wood pellet stoves and solar heating systems have beenevaluated. The systems and the houses have been simulated indetail using TRNSYS. The houses have been divided in up to 10different zones and heat transfer by air circulation throughdoorways and open doors have been simulated. The pellet stoveswere simulated using a recently developed TRNSYS component,which models the start- and stop phases, emissions and thedynamic behaviour of the stoves. The model also calculates theCO-emissions. Simulations were made with one stove without awater jacket and two stoves with different fractions of thegenerated heat distributed in the water circuit. Simulations show that the electricity savings using a pelletstove are greatly affected by the house plan, the systemchoice, if the internal doors are open or closed and thedesired level of comfort. Installing a stove with awater-jacket connected to a radiator system and a hot waterstorage has the advantage that heat can be transferred todomestic hot water and be distributed to other rooms. Suchsystems lead to greater electricity savings, especially inhouses having a traditional layout. It was found that not allrooms needed radiators and that it was more effective in mostcases t use a stove with a higher fraction of the heatdistributed by the water circuit. The economic investigation shows that installing a woodpellet stove without a water jacket gives the lowest totalenergy- and capital costs in the house with an open plan (fortoday's energy prices and the simulated comfort criteria). Inthe houses with a traditional layout a pellet stove givesslightly higher costs than the reference house having onlyelectrical resistance heating due to the fact that less heatingcan be replaced. The concepts including stoves with a waterjacket all give higher costs than the reference system, but theconcept closest to be economical is a system with a bufferstore, a stove with a high fraction of the heat distributed bythe water circuit, a new water radiator heating system and asolar collector. Losses from stoves can be divided into: flue gas lossesincluding leakage air flow when the stove is not in operation;losses during start and stop phases; and losses due to a highair factor. An increased efficiency of the stoves is importantboth from a private economical point of view, but also from theperspective that there can be a lack of bio fuel in the nearfuture also in Sweden. From this point of view it is alsoimportant to utilize as much solar heat as possible. Theutilization of solar heat is low in the simulated systems,depending on the lack of space for a large buffer store. The simulations have shown that the annual efficiency ismuch lower that the nominal efficiency at full power. Thesimulations have also shown that changing the control principlefor the stove can improve efficiency and reduce theCO-emissions. Today's most common control principle for stovesis the on/off control, which results in many starts and stopsand thereby high CO-emissions. A more advanced control varyingthe heating rate from maximum to minimum to keep a constantroom temperature reduces the number of starts and stops andthereby the emissions. Also the efficiency can be higher withsuch a control, and the room temperature will be kept at a moreconstant temperature providing a higher comfort.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the rapid advancement of the webtechnology, more and more educationalresources, including software applications forteaching/learning methods, are available acrossthe web, which enables learners to access thelearning materials and use various ways oflearning at any time and any place. Moreover,various web-based teaching/learning approacheshave been developed during the last decade toenhance the capability of both educators andlearners. Particularly, researchers from bothcomputer science and education are workingtogether, collaboratively focusing ondevelopment of pedagogically enablingtechnologies which are believed to improve theinfrastructure of education systems andprocesses, including curriculum developmentmodels, teaching/learning methods, managementof educational resources, systematic organizationof communication and dissemination ofknowledge and skills required by and adapted tousers. Despite of its fast development, however,there are still great gaps between learningintentions, organization of supporting resources,management of educational structures,knowledge points to be learned and interknowledgepoint relationships such as prerequisites,assessment of learning outcomes, andtechnical and pedagogic approaches. Moreconcretely, the issues have been widelyaddressed in literature include a) availability andusefulness of resources, b) smooth integration ofvarious resources and their presentation, c)learners’ requirements and supposed learningoutcomes, d) automation of learning process interms of its schedule and interaction, and e)customization of the resources and agilemanagement of the learning services for deliveryas well as necessary human interferences.Considering these problems and bearing in mindthe advanced web technology of which weshould make full use, in this report we willaddress the following two aspects of systematicarchitecture of learning/teaching systems: 1)learning objects – a semantic description andorganization of learning resources using the webservice models and methods, and 2) learningservices discovery and learning goals match foreducational coordination and learning serviceplanning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim was to evaluate results and experiences from development of new technology, a training program and implementation of strategies for the use of a video exposure monitoring method, PIMEX. Starting point of this study is an increased incidence of asthma among workers in the aluminium industry. Exposure peaks of fumes are supposed to play an important role. PIMEX makes it possible to link used work practice, use of control technology, and so forth to peaks. Nine companies participated in the project, which was divided into three parts, development of PIMEX technology, production of training material, and training in use of equipment and related strategies. The use of the video exposure monitoring method PIMEX offers prerequisites supporting workers participation in safety activities. The experiences from the project reveal the importance of good timing of primary training, technology development, technical support, and follow up training. In spite of a delay of delivery of the new technology, representatives from the participating companies declared that the experiences showed that PIMEX gave an important contribution for effective control of hazards in the companies. Eight out of nine smelters used the PIMEX method as a part of a strategy for control of workers exposure to fumes in potrooms. Possibilities to conduct effective control measures were identified. This article describes experiences from implementation of a, for this branch, new method supporting workers participation for workplace improvements.