4 resultados para added variable plot
em Dalarna University College Electronic Archive
Resumo:
PAPRO operates within the Forest Research company and their mission is to develop value-addingindustry solutions. At present there are no good ways for mills to easily test the printing quality on newsprintpaper. There is a great need for a fast way to do this on different paper qualities; with a laboratory-offset press this can be both a time and money saving method. At PAPRO Forest Research, NewZealand, a laboratory offset press has been developed and designed, during the past seven years, concerningthis issue. Earlier projects were made concerning the press, e.g. to establish the optimal settings.The mission with this project was to partly determine the present variability of the print quality andto evaluate if the fountain solution, distilled water and 2% Diol green concentrate, used at the momentmixed with different percentages of Isopropanol could decrease the variability and contribute to morestabile results. Throughout the whole project the print quality showed a high variation and was evenmore variable when the Isopropanol was added. All in all 50 print rounds times twelve printed paperstrips was carried out through the project divided into three parts. To analyse the print quality, amicroscope with an image capture camera has been used. Data from the taken images was analysedand inserted into charts to see the variations.The conclusions of the whole project are not satisfying because no final evaluations were possible tomake. Main conclusions are that the additive of Isopropanol to the ordinary fountain solution, used atpresent, only contributed to more unstable results of the print quality. And it seems to be difficult toget some stable results from the lab press as long as the room where it is placed is not fully conditionedas required for the process of offset printing. And the fact that the airbrush which applies theamount of fountain solution is also variable, as shown in earlier projects, which contributes to unstableresults as well. For further work more exact parameters as a conditioned room are required and thepossibility to further design the laboratory press to use waterless offset printing instead.
Resumo:
In Sweden solar irradiation and space heating loads are unevenly distributed over the year. Domestic hot water loads may be nearly constant. Test results on solar collector performance are often reported as yearly output of a certain collector at fixed temperatures, e g 25, 50 and 75 C. These data are not suitable for dimensioning of solar systems, because the actual performance of the collector depends heavily on solar fraction and load distribution over the year.At higher latitudes it is difficult to attain high solar fractions for buildings, due to overheating in summer and small marginal output for added collector area. Solar collectors with internal reflectors offer possibilities to evade overheating problems and deliver more energy at seasons when the load is higher. There are methods for estimating the yearly angular irradiation distribution, but there is a lack of methods for describing the load and the storage in such a way as to enable optical design of season and load adapted collectors.This report describes two methods for estimation of solar system performance with relevance for season and load adaption. Results regarding attainable solar fractions as a function of collector features, load profiles, load levels and storage characteristics are reported. The first method uses monthly collector output data at fixed temperatures from the simulation program MINSUN for estimating solar fractions for different load profiles and load levels. The load level is defined as estimated yearly collector output at constant collector temperature divided be yearly load. This table may examplify the results:CollectorLoadLoadSolar Improvementtypeprofile levelfractionover flat plateFlat plateDHW 75 %59 %Load adaptedDHW 75 %66 %12 %Flat plateSpace heating 50 %22 %Load adaptedSpace heating 50 %28 %29 %The second method utilises simulations with one-hour timesteps for collectors connected to a simplified storage and a variable load. Collector output, optical and thermal losses, heat overproduction, load level and storage temperature are presented as functions of solar incidence angles. These data are suitable for optical design of load adapted solar collectors. Results for a Stockholm location indicate that a solar combisystem with a solar fraction around 30 % should have collectors that reduce heat production at solar heights above 30 degrees and have optimum efficiency for solar heights between 8 and 30 degrees.
Resumo:
The use of roll-formed products in automotive, furniture, buildings etc. increases every year due to the low part-production cost and the complicated cross-sections that can be produced. The limitation with roll-forming until recent years is that one could only produce profiles with a constant cross-section in the longitudinal direction. About eight years ago ORTIC AB [1] developed a machine in which it was possible to produce profiles with a variable width (“3D roll-forming”) for the building industry. Experimental equipment was recently built for research and prototyping of profiles with variable cross-section in both width and depth for the automotive industry. The objective with the current study is to investigate the new tooling concept that makes it possible to roll-form hat-profiles, made of ultra high strength steel, with variable cross-section in depth and width. The result shows that it is possible to produce 3D roll-formed profiles with close tolerances.
Resumo:
This is a note about proxy variables and instruments for identification of structural parameters in regression models. We have experienced that in the econometric textbooks these two issues are treated separately, although in practice these two concepts are very often combined. Usually, proxy variables are inserted in instrument variable regressions with the motivation they are exogenous. Implicitly meaning they are exogenous in a reduced form model and not in a structural model. Actually if these variables are exogenous they should be redundant in the structural model, e.g. IQ as a proxy for ability. Valid proxies reduce unexplained variation and increases the efficiency of the estimator of the structural parameter of interest. This is especially important in situations when the instrument is weak. With a simple example we demonstrate what is required of a proxy and an instrument when they are combined. It turns out that when a researcher has a valid instrument the requirements on the proxy variable is weaker than if no such instrument exists