4 resultados para Zangerl, Rainer,
em Dalarna University College Electronic Archive
Resumo:
In Sweden, 90% of the solar heating systems are solar domestic hot water and heating systems (SDHW&H), so called combisystems. These generally supply most of the domestic hot water needs during the summer and have enough capacity to supply some energy to the heating system during spring and autumn. This paper describes a standard Swedish combisystem and how the output from it varies with heating load, climate within Sweden, and how it can be increased with improved system design. A base case is defined using the standard combi- system, a modern Swedish single family house and the climate of Stockholm. Using the simulation program Trnsys, parametric studies have been performed on the base case and improved system designs. The solar fraction could be increased from 17.1% for the base case to 22.6% for the best system design, given the same system size, collector type and load. A short analysis of the costs of changed system design is given, showing that payback times for additional investment are from 5-8 years. Measurements on system components in the laboratory have been used to verify the simulation models used. More work is being carried out in order to find even better system designs, and further improvements in system performance are expected.
Resumo:
Anneberg är ett område i Danderyds kommun där det skall beredas plats för ett nytt bostadsområde. Området skall bebyggas med flerbostadshus, gruppbostäder och ett sjukhem. Denna förstudie beskriver översiktligt 3 systemförslag som kan användas för uppvärmning av husen i bostadsområdet Anneberg. Målsättningen är att presentera uppvärmningssystem som visar hur solenergi kan användas för att öka värmepumpsystemens värmefaktor.Systemen modellerades i TRNSYS och systemfunktionen samt energiflöden simulerades. Simulerade prestanda för tre olika typer av uppvärmningssystem redovisas. System A är ett vanligt värmepumpsystem med borrhål och värmepump placerad i ett flerfamiljshus av typ 3. System B liknar system A, men har kompletterats med en glasad solfångare för varmvattenberedning. System C är en lösning som kan tillämpas för större byggnader eller för ett område med flera byggnader. Systemet har ett gemensamt värmelager och ett kulvertsystem som förbinder byggnaderna med värmelagret. I varje ansluten byggnad installeras sedan en värmepump och en oglasad solfångare.Simuleringsresultatet redovisas som en värmefaktor för systemets fem första driftår. System A får en värmefaktor på mellan 2,3 och 2,7 för de första 5 driftåren. System B får en värmefaktor på mellan 3,4 och 3,7 och system C får en värmefaktor på mellan 4,0 och 4,5. Studien visar att det går att öka värmefaktorn på en värmepumpanläggning från ca 2,5 upp till 4 eller 4,5 genom att komplettera anläggningen med solfångare och värmelager. Detta innebär att elförbrukningen minskar från att vara ca 40 % av värmebehovet ned till under 25 % av värmebehovet. Det bör således finnas en potential för att komplettera värmepumpanläggningar med solvärme. Vilket utförande som kan bli ekonomiskt intressant kan inte bedömas i denna förstudie. I förstudien visas enbart resultatet för tre enstaka systemutföranden. Inga parametervariationer (tex solfångaryta, antal borrhål och avstånd mellan borrhålen) är utförda. En sådan systemoptimering bör göras med förstudien som utgångsläge.