2 resultados para Warm deformation

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this project forging of aluminum alloy Al 6026 T9 has been performed in the temperature range of 400 °C – 470 °C. The alloy which was in the shape of a cylindrical billet was formed in a press with the aim of analyzing the effect of different forging temperatures and required press load for optimal die filling. The component’s dimensions were later measured and compared to a reference piece. To ease the flow of material a lubricant was used between the billet and the die. This was demonstrated by compressing the billet with and without any lubricant.The performed experiments show that the lubricant reduces friction and makes it easier for the material to flow into the die. Higher billet temperature than 450 °C is deemed unnecessary as it does not give any significant improvement in filling the die. The experiments also conclude that a press load of at least 280 tons is required for these conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dislocation model, accurately describing the uniaxial plastic stress-strain behavior of dual phase (DP) steels, is proposed and the impact of martensite content and ferrite grain size in four commercially produced DP steels is analyzed. It is assumed that the plastic deformation process is localized to the ferrite. This is taken into account by introducing a non-homogeneity parameter, f(e), that specifies the volume fraction of ferrite taking active part in the plastic deformation process. It is found that the larger the martensite content the smaller the initial volume fraction of active ferrite which yields a higher initial deformation hardening rate. This explains the high energy absorbing capacity of DP steels with high volume fractions of martensite. Further, the effect of ferrite grain size strengthening in DP steels is important. The flow stress grain size sensitivity for DP steels is observed to be 7 times larger than that for single phase ferrite.